On injectors and Fischer subgroups of a finite π -soluble group

TATYANA KARAULOVA

Throughout this paper all groups are finite. The notations and terminologies are standard as in [1].

A nonempty set \mathcal{F} of subgroups of G [3] is called a Fitting set of G if the following three conditions are satisfied: (i) If $T \subseteq S \in \mathcal{F}$, then $T \in \mathcal{F}$; (ii) If $S, T \in \mathcal{F}$ and $S, T \subseteq ST$, then $ST \in \mathcal{F}$; (iii) If $S \in \mathcal{F}$ and $S \in \mathcal{F}$ and $S \in \mathcal{F}$.

Let \mathbb{P} be the set of all primes and let $\emptyset \neq \pi \subseteq \mathbb{P}$, and $\pi' = \mathbb{P} \setminus \pi$. A Fitting set \mathcal{F} of a group G is said to be π -saturated if $\mathcal{F} = \{H \leq G : H/H_{\mathcal{F}} \in \mathfrak{E}_{\pi'}\}$, where $\mathfrak{E}_{\pi'}$ is the class of all π' -groups. Let \mathcal{F} be a Fitting set of G. An \mathcal{F} -subgroup F of G is said to be a Fischer \mathcal{F} -subgroup of a group G if F contains every \mathcal{F} -subgroup of G which is normalized by F.

If \mathcal{F} is a Fitting set of a group G, then a subgroup V of G is said to be

- (1) \mathcal{F} -maximal in G, if $V \in \mathcal{F}$ and U = V provided that $V \leq U \leq G$ and $U \in \mathcal{F}$.
- (2) an \mathcal{F} -injector of G, if $V \cap N$ is an \mathcal{F} -maximal subgroup of N for every subnormal subgroup N of G.

It is easy to see that in a soluble group G every \mathcal{F} -injector of G is a Fischer \mathcal{F} -subgroup of G. However, there exists Fitting sets \mathcal{F} of G and a soluble groups G such that a Fischer \mathcal{F} -subgroup of G is not \mathcal{F} -injector and Fischer \mathcal{F} -subgroups are not conjugate (see [1, VIII. (4.9)]).

A Fitting set \mathcal{F} of G is a Fischer π -set of G if $H \in \mathcal{F}$ whenever $K \subseteq L \in \mathcal{F}$ and H/K is a p-subgroup of L/K for some prime $p \in \pi$. If $\pi = \mathbb{P}$, then the Fischer π -set of G is a Fischer set of G (see [1, p. 554]).

It is proved

THEOREM 1. Let \mathcal{F} be a π -saturated Fischer π -set of a π -soluble group G. Then a subgroup V of G is an \mathcal{F} -injector of G if and only if V is a Fischer \mathcal{F} -subgroup of G containing a Hall π' -subgroup of G.

COROLLARY 1. Let \mathcal{F} be a π -saturated Fischer π -set of a π -soluble group G. Then the Fischer \mathcal{F} -subgroups containing a Hall π' -subgroup of G are conjugate in G.

COROLLARY 2 (Fischer [2]). Let \mathfrak{F} be a Fischer class of soluble groups. Then every soluble group G has a unique conjugate class of Fischer \mathfrak{F} -subgroups.

References

- 1. K. Doerk and T. Hawkes, Finite soluble groups, Berlin New York: Walter de Gruyter, 1992.
- 2. B. Fischer, Klassen konjugierter Untergruppen in endlichen auflösbaren Gruppen [Classes of conjugate Subgroups in finite soluble Groups], Habilitational thesis, Frankfurt University (M), 1966.
- 3. L. A. Shemetkov, On subgroups of π -soluble groups, in: Finite Groups, Minsk: "Nauka i Technika" (1975), 207-212.

CONTACT INFORMATION

Tatyana Karaulova

Department of Mathematics, Masherov Vitebsk State University, Vitebsk, Belarus *Email address*: tatyana.vasilevich.1992@mail.ru

Key words and phrases. Fitting set, Fischer set, \mathcal{F} -injector, Fischer \mathcal{F} -subgroups of G.

This research was partially supported by the State Research Programme "Convergence" of Belarus (2016 - 2020).