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𝑠ℓ5), 𝑠𝑟5) are described by Sh. Stein [5]. The identity 5) is known as I Stein’s law, 6) is II Stein’s
law, 7) is III Stein’s law, 19) is I Shröder’s law, 20) is II Shröder’s law. The identity 8) we call I
Belousov’s law and identity 9) we call II Belousov’s law.
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An algebra (𝑄; 𝑓, ℓ𝑓, 𝑟𝑓) is called a binary quasigroup [2] if it satisfies the following identities:

𝑓(ℓ𝑓(𝑥; 𝑦); 𝑦) = 𝑥, ℓ𝑓(𝑓(𝑥; 𝑦); 𝑦) = 𝑥, 𝑓(𝑥; 𝑟𝑓(𝑥; 𝑦)) = 𝑦, 𝑟𝑓(𝑥; 𝑓(𝑥; 𝑦)) = 𝑦. (1)
We consider a generalized quadratic binary quasigroup functional equations. Under the functional
equation [1] we mean the universally quantified equality of the two terms 𝜐 = 𝜔, which consists
of functional and individual variables, and has no individual or functional constants (for general
definition see [7]), while the carrier is considered to be an arbitrary set.

Two functional equations are said to be parastrophically primarily equivalent [5]–[7], if one
can obtain from the other for a finite number of following steps: 1) using quasigroup identities (1);
2) rearranging parts of the equation; 3) renaming the individual variables; 4) renaming the
functional variables.

Functional equation is called:
- generalized, if all the functional variables are pairwise different [4];
- quadratic, if every individual variable has exactly two appearance [3];
- balanced, if every individual variable has an appearance exactly once in the left and right

sides of the equation [3];
- binary, if all functional variables are binary operations [2];
- quasigroup, if it is assumed that each functional variable acquires the values in the set of

quasigroup operations of an arbitrary carrier [5].
A quasigroup functional equation is called reducible [7], if it is equivalent to a system of

equations, each of which has a smaller number of diferent individual variables. A quadratic
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functional equation is said to be parastrophically reducible if it is parastrophically equivalent
to a reducible equation. A quadratic quasigroup functional equation is called cancellable if it
has a self-sufficient sequence of subterms (a sequence of subterms of the equation is called self-
sufficient if it contains all the appearance of its individual variables in the equation). A quadratic
quasigroup functional equation is called parastrophically cancellable, if it is parastrophically
equivalent to a cancellable equation.

Theorem. [6] An arbitrary generalized quadratic cancellable functional equation is reducible.
An arbitrary generalized quadratic parastrophically cancellable equation is parastrophically re-
ducible.

It was proved in [4] that among all generalized quadratic binary quasigroup functional
equations in six individual variables there are 14 uncancellable equations. We reviewed each of
these 14 equations and found that they are all reducible. We give examples of a reducibility of
these equations.

Theorem 1. A generalized uncancellable quadratic binary quasigroup functional equation in
six individual variables

𝐹1(𝐹2(𝐹3(𝐹4(𝐹5(𝑥; 𝑦); 𝑧);𝑢); 𝑣);𝑤) = 𝐹6(𝑥;𝐹7(𝑦;𝐹8(𝑧;𝐹9(𝑢;𝐹10(𝑣;𝑤)))))

is equivalent to the following system of equations:⎧⎪⎪⎨⎪⎪⎩
𝐹1(𝐹2(𝑥; 𝑦); 𝑧) = 𝛾𝐹2(𝑥; 𝜌−1𝐹10(𝑦; 𝑧)),

𝛾𝐹2(𝐹3(𝑥; 𝑦); 𝜌−1𝑧) = 𝛿𝐹3(𝑥;𝜇−1𝐹9(𝑦; 𝑧)),
𝛿𝐹3(𝐹4(𝑥; 𝑦);𝜇−1𝑧) = 𝛼𝐹4(𝑥; 𝛽−1𝐹8(𝑦; 𝑧)),
𝛼𝐹4(𝐹5(𝑥; 𝑦); 𝛽−1𝑧) = 𝐹6(𝑥;𝐹7(𝑦; 𝑧)),

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜇, 𝜌 are arbitrary substitutions of the carrier set.

Theorem 2. A generalized uncancellable quadratic binary quasigroup functional equation in
six individual variables

𝐹1(𝐹2(𝑥, 𝐹3(𝑦, 𝐹4(𝑧, 𝑢))), 𝐹5(𝑣, 𝑤)) = 𝐹6(𝐹7(𝐹8(𝑥, 𝑦), 𝑧), (𝐹9(𝐹10(𝑢, 𝑣), 𝑤))

is equivalent to the following system of equations:⎧⎨⎩𝐹1(𝐹4(𝑥; 𝑦); 𝑧) = 𝐹6(𝜌
−1𝛿𝑥; 𝛽−1𝐹1(𝛼𝑦; 𝑧)),

𝐹7(𝐹8(𝑥; 𝑦); 𝑧) = 𝜌−1𝛿𝐹2(𝑥;𝐹3(𝑦; 𝛾−1𝑧)),
𝐹9(𝐹10(𝑥; 𝑦); 𝑧) = 𝛽−1𝐹1(𝛼𝑥;𝐹5(𝑦; 𝑧)),

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜌 are arbitrary substitutions of the carrier set.

Theorem 3. A generalized uncancellable quadratic binary quasigroup functional equation in
six individual variables

𝐹1(𝐹2(𝐹3(𝑥, 𝑦), (𝐹4(𝑧, 𝑢)), (𝐹5(𝑣, 𝑤)) = 𝐹6(𝐹7(𝑥, 𝑢), 𝐹8(𝐹9(𝑦, 𝑣), 𝐹10(𝑧, 𝑤)))

is equivalent to the following system of equations:⎧⎨⎩ 𝐹1(𝜈
−1𝐹6(𝛾

−1𝜈𝑥; 𝑦); 𝑣) = 𝐹6(𝛾
−1𝐹1(𝑥; 𝑣); 𝑦),

𝐹2(𝐹3(𝑥; 𝑦);𝐹4(𝑧;𝑢)) = 𝜈−1𝐹6(𝛾
−1𝜈𝐹2(𝛼𝑥; 𝛽𝑧);𝐹7(𝑦;𝑢)),

𝐹8(𝐹9(𝑦; 𝑣);𝐹10(𝑧;𝑤)) = 𝛾−1𝐹1(𝐹2(𝛼𝑦; 𝛽𝑧);𝐹5(𝑣;𝑤)),

where 𝛼, 𝛽, 𝛾, 𝜈 are arbitrary substitutions of the carrier set.

Lemma 1. All 14 generalized uncancellable quadratic binary quasigroup functional equations
in six individual variables are reducible.

Theorem 4. All generalized quadratic binary quasigroup functional equations in six individual
variables are reducible.
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A matrix representation of Fibonacci and Lucas

polynomials

Mariia Kuchma

The k-Fibonacci and k-Lucas polynomials [2] are the natural extension of the k-Fibonacci
and k-Lucas numbers and many of their properties admit a straightforward proof. The Fibonacci
sequence and the golden ratio have appeared in many fields of science including high energy
physics, cryptography and coding [1, 5].

Definition 1. The Fibonacci polynomial 𝐹𝑛(𝑥) is defined recurrently relation
𝐹𝑛+1(𝑥) = 𝑥𝐹𝑛(𝑥) + 𝐹𝑛−1(𝑥) (1)

with 𝐹0(𝑥) = 0, 𝐹1(𝑥) = 1 for 𝑛 ≥ 1.

Fibonacci polynomials for negative subscripts are defined as 𝐹−𝑛(𝑥) = (−1)𝑛+1𝐹𝑛(𝑥) for
𝑛 ≥ 1.

Definition 2. The Lucas polynomial 𝐿𝑛(𝑥) is defined by the relation
𝐿𝑛+1(𝑥) = 𝑥𝐿𝑛(𝑥) + 𝐿𝑛−1(𝑥) (2)

with 𝐿0(𝑥) = 2, 𝐿1(𝑥) = 𝑥 for 𝑛 ≥ 1 and 𝐿𝑛(𝑥) = 𝐹𝑛+1(𝑥) + 𝐹𝑛−1(𝑥) for 𝑛 ∈ Z.

If 𝑥 = 1, the classic Fibonacci and Lucas sequences are obtained from (1), (2) [3-5].

Lemma 1. If 𝑋 is a square matrix with 𝑋2 = 𝑥𝑋 + 𝐼, then 𝑋𝑛 = 𝐹𝑛(𝑥)𝑋 + 𝐹𝑛−1(𝑥)𝐼 for
all 𝑛 ∈ Z.
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