PROPOSITION 1. Let $Q(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}$. Then 1) $Q(x)^n = \begin{pmatrix} F_{n+1}(x) & F_n(x) \\ F_n(x) & F_{n-1}(x) \end{pmatrix}$ for all $n \in \mathbb{Z}$; 2) det $Q(x)^n = (-1)^n$ (Cassini's identity).

PROPOSITION 2. Let $R(x) = \begin{pmatrix} x & 2 \\ 2 & -x \end{pmatrix}$. Then 1) Q(x)R(x) = R(x)Q(x); 2) $Q(x)^n R(x) = \begin{pmatrix} L_{n+1}(x) & L_n(x) \\ L_n(x) & L_{n-1}(x) \end{pmatrix}$ for all $n \in \mathbb{Z}$; 3) det $(Q(x)^n R(x)) = (-1)^{n+1}(x^2+4)$ (Cassini's identity).

PROPOSITION 3. The n-th Fibonacci polynomial may be written as $F_n(x) = \frac{\sigma^n - (-\sigma)^{-n}}{\sigma + \sigma^{-1}}$ being $\sigma = \frac{x + \sqrt{x^2 + 4}}{2}$ (Binet's formula).

References

- M. Esmaeili, M. Esmaeili, A Fibonacci-polynomial based coding method with error detection and correction, Computers and Mathematics with Applications. 60 (2010), 2738-2752.
- S. Falcon, A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons and Fractals. 39 (2009), no. 1, 1005-1019.
- 3. VE. Hoggat, Fibonacci and Lucas numbers, Palo Alto (CA): Houghton-Mifflin, 1969.
- A. Stakhov, B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitons and Fractals. 27 (2005), no. 5, 1162-1177.
- 5. Th. Koshy, Fibonacci and Lucas Numbers with Applications, J. Wiley and Sons, New York, 2001.

CONTACT INFORMATION

Mariia Kuchma

Lviv Polytechnic National University, Lviv, Ukraine Email address: markuchma@ukr.net URL: http://lp.edu.ua/

Key words and phrases. Fibonacci polynomial, Lucas polynomial, Golden mean

On the structure of finite groups whose non-normal subgroups are core-free

LEONID A. KURDACHENKO, ALEKSANDR A. PYPKA, IGOR YA. SUBBOTIN

Let G be a group. The following two normal subgroups are associated with any subgroup H of the group G: H^G , the normal closure of H in a group G, the least normal subgroup of G including H, and $\mathbf{Core}_G(H)$, the (normal) core of H in G, the greatest normal subgroup of G which is contained in H. We have $H^G = \langle H^x | x \in G \rangle$ and $\mathbf{Core}_G(H) = \bigcap_{x \in G} H^x$. A subgroup H is normal if and only if $H = H^G = \mathbf{Core}_G(H)$. In this sense, the subgroups H, for which $\mathbf{Core}_G(H) = \langle 1 \rangle$, are the complete opposite of the normal subgroups. A subgroup H of a group G is called *core_free* in G if $\mathbf{Core}_G(H) = \langle 1 \rangle$.

There is a whole series of papers devoted to the study of groups with only two types of subgroups. In particular, from the results of [1] it is possible to obtain a description of groups that have only two possibilities for each subgroup $H: H^G = H$ or $H^G = G$. In this connection, a dual question naturally arises on the structure of groups in which there are only two other possibilities: $\mathbf{Core}_G(H) = H$ or $\mathbf{Core}_G(H) = \langle 1 \rangle$. The finite groups having this property have been studied in [2].

Our main result gives a description of the finite soluble groups, whose non-normal subgroups are core-free. As we noted above, the finite groups whose non-normal subgroups are core-free were studied in [2]. Our description is more detailed than the description given in Theorem 1 of this paper. We also note that the proof of Lemma 5 of the paper [2] contains a gap (only the case when the both factor-groups G/N_1 and G/N_2 are non-abelian) and mistake (the fact that H is a subgroup of $T \times A$ does not imply that $H = H_1 \times H_2$ where $H_1 \leq T$ and $H_2 \leq A$).

Let G be a group. The intersection of all non-trivial normal subgroups Mon(G) of G is called the *monolith* of a group G. If $Mon(G) \neq \langle 1 \rangle$, then the group G is called *monolithic*.

THEOREM 1. Let G be a finite soluble group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group. Then G is monolithic.

If the center of G includes the monolith, then G = KE where K is a cyclic p-subgroup, E is an extraspecial p-subgroup, $K = \zeta(G)$ and $K \cap E = [G, G]$ is a subgroup of order p, p is a prime.

If the monolith of G is not central, then $G = Mon(G) \setminus A$, and:

- (i) Mon(G) is elementary abelian p-subgroup for some prime p and A is a p'-group;
- (ii) $[G,G] = \mathbf{Mon}(G) = C_G(\mathbf{Mon}(G));$
- (iii) whether the subgroup A is cyclic, or $A = Q \times B$ where Q is a quaternion group of order 8, and B is a cyclic 2'-subgroup;
- (iv) if C is another complement to Mon(G) in G, then the subgroups A and C are conjugate.

References

- M. De Falco, L.A. Kurdachenko, I.Ya. Subbotin, Groups with only abnormal and subnormal subgroups, Atti Sem. Mat. Fis. Univ. Modena. 46 (1998), 435–442.
- L. Zhao, Y. Li, L. Gong, Finite groups in which the cores of every non-normal subgroups are trivial, Publ. Math. Debrecen. 93 (2018), no. 3–4, 511–516.

CONTACT INFORMATION

Leonid A. Kurdachenko

Department of Geometry and Algebra, Oles Honchar Dnipro National University, Dnipro, Ukraine

Email address: lkurdachenko@i.ua

Aleksandr A. Pypka

Department of Geometry and Algebra, Oles Honchar Dnipro National University, Dnipro, Ukraine

Email address: pypka@ua.fm

Igor Ya. Subbotin

Department of Mathematics and Natural Sciences, National University, LA, USA *Email address*: isubboti@nu.edu