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Proposition 1. Let 𝑄(𝑥) =

(︂
𝑥 1
1 0

)︂
. Then 1) 𝑄(𝑥)𝑛 =

(︂
𝐹𝑛+1(𝑥) 𝐹𝑛(𝑥)
𝐹𝑛(𝑥) 𝐹𝑛−1(𝑥)

)︂
for all

𝑛 ∈ Z; 2) det 𝑄(𝑥)𝑛 = (−1)𝑛 (Cassini’s identity).

Proposition 2. Let 𝑅(𝑥) =

(︂
𝑥 2
2 −𝑥

)︂
. Then 1) 𝑄(𝑥)𝑅(𝑥) = 𝑅(𝑥)𝑄(𝑥); 2) 𝑄(𝑥)𝑛𝑅(𝑥) =(︂

𝐿𝑛+1(𝑥) 𝐿𝑛(𝑥)
𝐿𝑛(𝑥) 𝐿𝑛−1(𝑥)

)︂
for all 𝑛 ∈ Z; 3) det (𝑄(𝑥)𝑛𝑅(𝑥)) = (−1)𝑛+1(𝑥2+4) (Cassini’s identity).

Proposition 3. The n-th Fibonacci polynomial may be written as 𝐹𝑛(𝑥) = 𝜎𝑛−(−𝜎)−𝑛

𝜎+𝜎−1 being
𝜎 = 𝑥+

√
𝑥2+4
2

(Binet’s formula).
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On the structure of finite groups whose non-normal

subgroups are core-free

Leonid A. Kurdachenko, Aleksandr A. Pypka, Igor Ya. Subbotin

Let 𝐺 be a group. The following two normal subgroups are associated with any subgroup 𝐻
of the group 𝐺: 𝐻𝐺, the normal closure of 𝐻 in a group 𝐺, the least normal subgroup of 𝐺
including 𝐻, and Core𝐺(𝐻), the (normal) core of 𝐻 in 𝐺, the greatest normal subgroup of 𝐺
which is contained in 𝐻. We have 𝐻𝐺 = ⟨𝐻𝑥|𝑥 ∈ 𝐺⟩ and Core𝐺(𝐻) =

⋂︀
𝑥∈𝐺

𝐻𝑥. A subgroup

𝐻 is normal if and only if 𝐻 = 𝐻𝐺 = Core𝐺(𝐻). In this sense, the subgroups 𝐻, for which
Core𝐺(𝐻) = ⟨1⟩, are the complete opposite of the normal subgroups. A subgroup 𝐻 of a group
𝐺 is called core–free in 𝐺 if Core𝐺(𝐻) = ⟨1⟩.

There is a whole series of papers devoted to the study of groups with only two types of
subgroups. In particular, from the results of [1] it is possible to obtain a description of groups
that have only two possibilities for each subgroup 𝐻: 𝐻𝐺 = 𝐻 or 𝐻𝐺 = 𝐺. In this connection,
a dual question naturally arises on the structure of groups in which there are only two other
possibilities: Core𝐺(𝐻) = 𝐻 or Core𝐺(𝐻) = ⟨1⟩. The finite groups having this property have
been studied in [2].
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Our main result gives a description of the finite soluble groups, whose non–normal subgroups
are core–free. As we noted above, the finite groups whose non–normal subgroups are core–free
were studied in [2]. Our description is more detailed than the description given in Theorem 1 of
this paper. We also note that the proof of Lemma 5 of the paper [2] contains a gap (only the
case when the both factor–groups 𝐺/𝑁1 and 𝐺/𝑁2 are non–abelian) and mistake (the fact that
𝐻 is a subgroup of 𝑇 × 𝐴 does not imply that 𝐻 = 𝐻1 ×𝐻2 where 𝐻1 6 𝑇 and 𝐻2 6 𝐴).

Let 𝐺 be a group. The intersection of all non–trivial normal subgroups Mon(𝐺) of 𝐺 is
called the monolith of a group 𝐺. If Mon(𝐺) ̸= ⟨1⟩, then the group 𝐺 is called monolithic.

Theorem 1. Let 𝐺 be a finite soluble group, whose non–normal subgroups are core–free.
Suppose that 𝐺 is not a Dedekind group. Then 𝐺 is monolithic.

If the center of 𝐺 includes the monolith, then 𝐺 = 𝐾𝐸 where 𝐾 is a cyclic 𝑝–subgroup, 𝐸
is an extraspecial 𝑝–subgroup, 𝐾 = 𝜁(𝐺) and 𝐾 ∩ 𝐸 = [𝐺,𝐺] is a subgroup of order 𝑝, 𝑝 is a
prime.

If the monolith of 𝐺 is not central, then 𝐺 = Mon(𝐺)h 𝐴, and:
(i) Mon(𝐺) is elementary abelian 𝑝–subgroup for some prime 𝑝 and 𝐴 is a 𝑝′-group;
(ii) [𝐺,𝐺] = Mon(𝐺) = 𝐶𝐺(Mon(𝐺));

(iii) whether the subgroup 𝐴 is cyclic, or 𝐴 = 𝑄×𝐵 where 𝑄 is a quaternion group of order
8, and 𝐵 is a cyclic 2′–subgroup;

(iv) if 𝐶 is another complement to Mon(𝐺) in 𝐺, then the subgroups 𝐴 and 𝐶 are conjugate.
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