Leibniz algebras with the specifiec types of subalgebras

Leonid A. Kurdachenko, Igor Ya. Subbotin, Viktoriia S. Yashchuk

Let L be an algebra over a field F with the binary operations + and [,]. Then L is called a Leibniz algebra (more precisely a left Leibniz algebra), if it satisfies the (left) Leibniz identity: $[[a,[b, c]]=[[a, b], c]+[b,[a, c]]$ for all $a, b, c \in L$.

Leibniz algebra appeared first in the papers of A. M. Bloh [1], in which he called them D-algebras. Real interest in Leibniz algebras arose only after two decades thanks to the work of J. L. Loday [2].

A subspace A of a Leibniz algebra L is called a subalgebra, if $[x, y] \in A$ for all elements $x, y \in A$. A subalgebra A is called a left (respectively right) ideal of L, if $[y, x] \in A$ (respectively $[x, y] \in A)$ for every $x \in A, y \in L$. In other words, if A is a left (respectively right) ideal, then $[L, A] \leq A$ (respectively $[A, L] \leq A$). The center $\zeta(L)$ of L is defined by the rule: $\zeta(L)=\{x \in L \mid[x, y]=0=[y, x]$ for each element $y \in L\}$. A subalgebra A of L is called an contraideal of L, if $A^{L}=L$. A Leibniz algebra L is called extraspecial, if $[L, L]=\zeta(L)$ has dimension 1.

Theorem 1. Let L be a soluble Leibniz algebra, whose subalgebras are either ideals or contraideals. Then L is an algebra of one of following types:
(i) L is abelian;
(ii) $L=E \oplus Z$, where E is an extraspecial subalgebra such that $[e, e] \neq 0$ for each element $e \notin \zeta(E)$ and $Z \leq \zeta(L)$;
(iii) $L=D \oplus F b$, where $[y, y]=0=[b, b],[b, y]=y=-[y, b]$ for every $y \in D$, in particular, L is a Lie algebra;
(iv) $L=D \oplus F b$, where $[y, y]=[y, b]=0=[b, b],[b, y]=y$ for every $y \in D$, in particular, $D=[L, L]=\operatorname{Leib}(L) ;$
(v) $L=B \oplus A$, where $A=F a_{1} \oplus F c_{1},\left[a_{1}, a_{1}\right]=c_{1},\left[c_{1}, a_{1}\right]=0,\left[a_{1}, c_{1}\right]=c_{1}$ and $[b, b]=\left[b, a_{1}\right]=\left[b, c_{1}\right]=\left[c_{1}, b\right]=0,\left[a_{1}, b\right]=b$ for every $b \in B$, in particular, $B \oplus F c_{1}=[L, L]=\operatorname{Leib}(L)$.
(vi) $\operatorname{char}(F)=2, L=D \oplus F a$, where D has a basis $\left\{z, b_{\lambda} \mid \lambda \in \Lambda\right\}$ such that $[a, a]=\alpha z$, $\left[a, b_{\lambda}\right]=b_{\lambda}=\left[b_{\lambda}, a\right],[a, z]=[z, a]=0,\left[z, b_{\lambda}\right]=\left[b_{\lambda}, z\right]=0$ and $0 \neq\left[b_{\lambda}, b_{\lambda}\right] \in F z, \lambda \in \Lambda$, $\left[b_{\lambda}, b_{\mu}\right]=0$ for all $\lambda, \mu \in \Lambda, \lambda \neq \mu$, in particular, $D=[L, L], F z=\operatorname{Leib}(L)$.

References

1. A.M. Bloh, On a generalization of the concept of Lie algebra, Doklady AN USSR 165 (1965), 471-473 (in Russian).
2. J.L. Loday, Une version non commutative des algèbres de Lie: les algèbras de Leibniz, L’Enseignement Mathèmatique 39 (1993), 269-293.

Contact information

Leonid A. Kurdachenko

Department of Geometry and Algebra, Oles Honchar Dnipro National University, Dnipro, Ukraine
Email address: lkurdachenko@i.ua

Igor Ya. Subbotin

Department of Mathematics and Natural Sciences, National University, Los Angeles, USA
Email address: isubboti@nu.edu

Viktoriia S. Yashchuk

Department of Geometry and Algebra, Oles Honchar Dnipro National University, Dnipro, Ukraine
Email address: Viktoriia.S.Yashchuk@gmail.com
Key words and phrases. Leibniz algebra, ideal, contraideal, extraspecial Leibniz algebra

Cramer's rules for Sylvester-type quaternion matrix equations

Ivan Kyrchei

Consider the two-sided generalized Sylvester matrix equation

$$
\begin{equation*}
\mathrm{AXB}+\mathbf{C Y D}=\mathbf{E} \tag{1}
\end{equation*}
$$

over the quaternion skew field \mathbb{H}. The Sylvester matrix equation has far reaching applications in different fields (see, e.g., [1]). Its solving is based on generalized inverses which are important tools in solving of matrix equations. Let for $\mathbf{A} \in \mathbb{H}^{m \times n}, \mathbf{A}^{\dagger}$ mean its Moore-Penrose generalized inverse, i.e. the exclusive matrix $\mathbf{X} \in \mathbb{H}^{n \times m}$ satisfying $\mathbf{A X A}=\mathbf{A}, \mathbf{X A X}=\mathbf{X},(\mathbf{A X})^{*}=$ $\mathbf{A X},(\mathbf{X A})^{*}=\mathbf{X A}$. Furthermore, let $\mathbf{L}_{A}=\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}$ and $\mathbf{R}_{A}=\mathbf{I}-\mathbf{A} \mathbf{A}^{\dagger}$ be a couple of projectors induced by A. In [2] the solvability conditions to Eq. (1) was obtained and its general solution was expressed in terms of generalized inverses as follows:

$$
\begin{aligned}
\mathbf{X} & =\mathbf{A}^{\dagger} \mathbf{E} \mathbf{B}^{\dagger}-\mathbf{A}^{\dagger} \mathbf{C M}^{\dagger} \mathbf{R}_{A} \mathbf{E B}^{\dagger}-\mathbf{A}^{\dagger} \mathbf{S C}^{\dagger} \mathbf{E L} \\
B & \mathbf{N}^{\dagger} \mathbf{D} \mathbf{B}^{\dagger}-\mathbf{A}^{\dagger} \mathbf{S V R}_{N} \mathbf{D B}^{\dagger}+\mathbf{L}_{A} \mathbf{U}+\mathbf{Z R}_{B}, \\
\mathbf{Y} & =\mathbf{M}^{\dagger} \mathbf{R}_{A} \mathbf{E D}^{\dagger}+\mathbf{L}_{M} \mathbf{S}^{\dagger} \mathbf{S C}^{\dagger} \mathbf{E L}_{B} \mathbf{N}^{\dagger}+\mathbf{L}_{M}\left(\mathbf{V}-\mathbf{S}^{\dagger} \mathbf{S V N N}\right.
\end{aligned}
$$

where $\mathbf{U}, \mathbf{V}, \mathbf{Z}$ and \mathbf{W} are arbitrary matrices of suitable sizes over $\mathbb{H}, \mathbf{M}:=\mathbf{R}_{A} \mathbf{C}, \mathbf{N}:=\mathbf{D L}_{B}$, and $\mathbf{S}:=\mathbf{C L}_{M}$.

Using determinantal representations of the Moore-Penrose inverse, previously obtained in [3], within the framework of the theory of quaternion row-column determinants (introduced in $[4,5]$), we got in $[6]$ explicit determinantal representation formulas (analogs of Cramer's Rule) for the solution to Eq. (1) and to its special cases when its first term or both terms are one-sided. The Cramer's Rules for general, Hermitian, or η-Hermitian solutions ($\eta \in\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$) to the Sylvester-type matrix equations involving $*$-Hermicity or η-Hermicity (i.e. when in Eq. (1), $\mathbf{B}=\mathbf{A}^{*}$ and $\mathbf{D}=\mathbf{C}^{*}$, or $\mathbf{B}=\mathbf{A}^{\eta *}$ and $\mathbf{D}=\mathbf{C}^{\eta *}$, respectively) are derived in $[7]$.

References

1. C.C. Took, D.P. Mandic, Augmented second-order statistics of quaternion random signals, Sign. Process. 91 (2011), 214-224.
2. Q.W. Wang, J.W. van der Woude, H.X. Chang, A system of real quaternion matrix equations with applications, Linear Algebra Appl. 431 (2009), 2291-2303.
3. I. Kyrchei, Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer's rules, Linear Multilinear Algebra 59 (2011), no. 4, 413-431.
4. I. Kyrchei, Cramer's rule for quaternion systems of linear equations, Fundam. Prikl. Mat. 13 (2007), no. 4, 67-94.
5. I. Kyrchei, The theory of the column and row determinants in a quaternion linear algebra, In: A.R. Baswell (Ed.), Advances in Mathematics Research no. 15, 301-359, Nova Science Publ., New York, 2012.
6. I. Kyrchei, Cramer's Rules for Sylvester quaternion matrix equation and its special cases, Adv. Appl. Clifford Algebras 28:90 (2018).
7. I. Kyrchei, Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrix equation, Abstr. Appl. Anal. ID5926832 (2019), 14 p.
