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Leibniz algebras with the specifiec types of subalgebras

Leonid A. Kurdachenko, Igor Ya. Subbotin, Viktoriia S. Yashchuk

Let 𝐿 be an algebra over a field 𝐹 with the binary operations + and [, ]. Then 𝐿 is called a
Leibniz algebra (more precisely a left Leibniz algebra), if it satisfies the (left) Leibniz identity:
[[𝑎, [𝑏, 𝑐]] = [[𝑎, 𝑏], 𝑐] + [𝑏, [𝑎, 𝑐]] for all 𝑎, 𝑏, 𝑐 ∈ 𝐿.

Leibniz algebra appeared first in the papers of A.M. Bloh [1], in which he called them
𝐷-algebras. Real interest in Leibniz algebras arose only after two decades thanks to the work of
J. L. Loday [2].

A subspace 𝐴 of a Leibniz algebra 𝐿 is called a subalgebra, if [𝑥, 𝑦] ∈ 𝐴 for all elements
𝑥, 𝑦 ∈ 𝐴. A subalgebra 𝐴 is called a left (respectively right) ideal of 𝐿, if [𝑦, 𝑥] ∈ 𝐴 (respectively
[𝑥, 𝑦] ∈ 𝐴) for every 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐿. In other words, if 𝐴 is a left (respectively right) ideal,
then [𝐿,𝐴] ≤ 𝐴 (respectively [𝐴,𝐿] ≤ 𝐴). The center 𝜁(𝐿) of 𝐿 is defined by the rule:
𝜁(𝐿) = {𝑥 ∈ 𝐿|[𝑥, 𝑦] = 0 = [𝑦, 𝑥] for each element 𝑦 ∈ 𝐿}. A subalgebra 𝐴 of 𝐿 is called an
contraideal of 𝐿, if 𝐴𝐿 = 𝐿. A Leibniz algebra 𝐿 is called extraspecial, if [𝐿,𝐿] = 𝜁(𝐿) has
dimension 1.

Theorem 1. Let 𝐿 be a soluble Leibniz algebra, whose subalgebras are either ideals or
contraideals. Then 𝐿 is an algebra of one of following types:

(i) 𝐿 is abelian;
(ii) 𝐿 = 𝐸 ⊕ 𝑍, where 𝐸 is an extraspecial subalgebra such that [𝑒, 𝑒] ̸= 0 for each element

𝑒 /∈ 𝜁(𝐸) and 𝑍 ≤ 𝜁(𝐿);
(iii) 𝐿 = 𝐷⊕𝐹𝑏, where [𝑦, 𝑦] = 0 = [𝑏, 𝑏], [𝑏, 𝑦] = 𝑦 = −[𝑦, 𝑏] for every 𝑦 ∈ 𝐷, in particular,

𝐿 is a Lie algebra;
(iv) 𝐿 = 𝐷 ⊕ 𝐹𝑏, where [𝑦, 𝑦] = [𝑦, 𝑏] = 0 = [𝑏, 𝑏], [𝑏, 𝑦] = 𝑦 for every 𝑦 ∈ 𝐷, in particular,

𝐷 = [𝐿,𝐿] = Leib(𝐿);
(v) 𝐿 = 𝐵 ⊕ 𝐴, where 𝐴 = 𝐹𝑎1 ⊕ 𝐹𝑐1, [𝑎1, 𝑎1] = 𝑐1, [𝑐1, 𝑎1] = 0, [𝑎1, 𝑐1] = 𝑐1 and

[𝑏, 𝑏] = [𝑏, 𝑎1] = [𝑏, 𝑐1] = [𝑐1, 𝑏] = 0, [𝑎1, 𝑏] = 𝑏 for every 𝑏 ∈ 𝐵, in particular,
𝐵 ⊕ 𝐹𝑐1 = [𝐿,𝐿] = Leib(𝐿).

(vi) char(𝐹 ) = 2, 𝐿 = 𝐷 ⊕ 𝐹𝑎, where 𝐷 has a basis {𝑧, 𝑏𝜆|𝜆 ∈ Λ} such that [𝑎, 𝑎] = 𝛼𝑧,
[𝑎, 𝑏𝜆] = 𝑏𝜆 = [𝑏𝜆, 𝑎], [𝑎, 𝑧] = [𝑧, 𝑎] = 0,[𝑧, 𝑏𝜆] = [𝑏𝜆, 𝑧] = 0 and 0 ̸= [𝑏𝜆, 𝑏𝜆] ∈ 𝐹𝑧, 𝜆 ∈ Λ,
[𝑏𝜆, 𝑏𝜇] = 0 for all 𝜆, 𝜇 ∈ Λ, 𝜆 ̸= 𝜇, in particular, 𝐷 = [𝐿,𝐿], 𝐹𝑧 = Leib(𝐿).
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Cramer’s rules for Sylvester-type quaternion matrix

equations

Ivan Kyrchei

Consider the two-sided generalized Sylvester matrix equation
AXB + CYD = E (1)

over the quaternion skew field H. The Sylvester matrix equation has far reaching applications
in different fields (see, e.g., [1]). Its solving is based on generalized inverses which are important
tools in solving of matrix equations. Let for A ∈ H𝑚×𝑛, A† mean its Moore-Penrose generalized
inverse, i.e. the exclusive matrix X ∈ H𝑛×𝑚 satisfying AXA = A, XAX = X, (AX)* =
AX, (XA)* = XA. Furthermore, let L𝐴 = I−A†A and R𝐴 = I−AA† be a couple of projectors
induced by A. In [2] the solvability conditions to Eq. (1) was obtained and its general solution
was expressed in terms of generalized inverses as follows:

X = A†EB† −A†CM†R𝐴EB
† −A†SC†EL𝐵N

†DB† −A†SVR𝑁DB† + L𝐴U + ZR𝐵,

Y = M†R𝐴ED
† + L𝑀S†SC†EL𝐵N

† + L𝑀(V − S†SVNN†) + WR𝐷,

where U, V, Z and W are arbitrary matrices of suitable sizes over H, M := R𝐴C, N := DL𝐵,
and S := CL𝑀 .

Using determinantal representations of the Moore-Penrose inverse, previously obtained in
[3], within the framework of the theory of quaternion row-column determinants (introduced
in [4, 5]), we got in [6] explicit determinantal representation formulas (analogs of Cramer’s
Rule) for the solution to Eq. (1) and to its special cases when its first term or both terms are
one-sided. The Cramer’s Rules for general, Hermitian, or 𝜂-Hermitian solutions (𝜂 ∈ {i, j,k})
to the Sylvester-type matrix equations involving *-Hermicity or 𝜂-Hermicity (i.e. when in Eq.
(1), B = A* and D = C*, or B = A𝜂* and D = C𝜂*, respectively) are derived in [7].
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