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Homological algebra in degree zero

Alex Martsinkovsky

The term "homological algebra in degree zero" refers, in the narrow sense of the word, to
calculation of the zeroth derived functor of an additive functor between abelian categories. Most
people do not realize that this is an interesting problem because the zeroth right derived functor
of a Hom functor is the same Hom functor, and the same can be said about the zeroth left
derived functor of the tensor product. The situation changes dramatically if those functors
are derived on the opposite sides. In fact, the emerging phenomena seem to be rather diverse
and widespread. Those include: a new approach to classical torsion and to Bass torsion, a
definition of cotorsion (this is a new concept), dualities between torsion and cotorsion, theorems
of Watts and Eilenberg, new results in ring and module theory, a number of formulas that
extend several of Auslander’s formulas from finitely presented modules to arbitrary modules, a
new generalization of Tate homology, a connection between module theory and stable homotopy
theory, etc. In this talk, I will try and explain some of those results. Most of this talk is based
on joint work with Jeremy Russell.
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Some subsemimodules of differential semimodules

satisfying the ascending chain condition

Ivanna Melnyk

Let 𝑅 be a semiring and let 𝑀 be a left semimodule over 𝑅. A map 𝛿 : 𝑅→ 𝑅 is called a
derivation on 𝑅 [2] if 𝛿 (𝑎+ 𝑏) = 𝛿 (𝑎) + 𝛿 (𝑏) and 𝛿 (𝑎𝑏) = 𝛿 (𝑎) 𝑏 + 𝑎𝛿 (𝑏) for any 𝑎, 𝑏 ∈ 𝑅. A
semiring 𝑅 equipped with a derivation 𝛿 is called a differential semiring with respect to the
derivation 𝛿 [1]. A map 𝑑 : 𝑀 →𝑀 is called a derivation of the semimodule 𝑀 , associated with
the semiring derivation 𝛿 : 𝑅 → 𝑅 if 𝑑 (𝑚+ 𝑛) = 𝑑 (𝑚) + 𝑑 (𝑛) and 𝑑 (𝑟𝑚) = 𝛿 (𝑟)𝑚 + 𝑟𝑑 (𝑚)
for any 𝑚,𝑛 ∈ 𝑀 , 𝑟 ∈ 𝑅. A left 𝑅-semimodule 𝑀 together with a derivation 𝑑 : 𝑀 → 𝑀 is
called a differential semimodule.

A subsemimodule 𝑁 of the differential 𝑅-semimodule 𝑀 is called differential if
𝑑 (𝑁) ⊆ 𝑁 . For a subset 𝑋 of 𝑀 its differential 𝑋# is defined to be the set 𝑋# =
{𝑥 ∈𝑀 |𝑑𝑛(𝑥) ∈ 𝑋 for all𝑛 ∈ N0} .

Let 𝑆 be an 𝑚-system of 𝑅. A non-empty subset 𝑇 of the 𝑅-semimodule 𝑀 is called an
𝑆𝑚-system of 𝑀 if for every 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑇 there exists 𝑟 ∈ 𝑅 such that 𝑠𝑟𝑥 ∈ 𝑇 .

A differential subsemimodule 𝑁 of the differential semimodule 𝑀 is called quasi-prime if it
is maximal among differential subsemimodules of 𝑀 disjoint from some 𝑆𝑚-system of 𝑀 .

Theorem 1. For a differential subsemimodule 𝑄 of 𝑅 the following conditions are equivalent:
(1) 𝑄 is a quasi-prime subsemimodule of 𝑀 ;
(2) 𝑟𝑎𝑑(𝑄) is a prime subsemimodule of 𝑀 and 𝑄 = (𝑟𝑎𝑑(𝑄))#;
(3) There exists a prime subsemimodule 𝑃 of 𝑀 such that 𝑄 = 𝑃#.

Theorem 2. For every differential subsemimodule 𝑁 of the differential semimodule 𝑀
satisfying the ascending chain condition on differential 𝑘-subsemimodules the following conditions
are equivalent:

(1) 𝑁 is a differentially prime subsemimodule;
(2) 𝑁 is a quasi-prime subsemimodule;
(3) 𝑁 = 𝑃# for some prime subsemimodule 𝑃 of 𝑀 .
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