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Class of differentiable invertible automatous with an
algorithmically solvable conjugacy problem

DENIS MOROZOV

In this abstracts conjugacy problem in the group of finite-state automorphisms of rooted
binary tree investigated.

The research of group’s automatous is technically complicated. The presentation of group’s
automatous with p-adic functions provides a convenient technique.

The following results solve the conjugacy problem for differentiable finite-state group’s
automatous.
LEMMA 1. Let

a = (ar,az)00,b=(b;,by) 00
a = a,0aq,b =boby

and a' 1 b are conjugated in F AutT.
Then a i b are conjugated in F AutTs.

DEFINITION 1. We denote the function ¢,(z) as follows:

—n—1,a=1,b=2"(2t+ 1);
Gad) =4 20, a =222k +1)+ 1,5 >0, b=0;
(2" mod 2°) +2°, a =252k +1)+ 1,5 > 0 b=2"(2t + 1).

THEOREM 1. Two linear automorphisms f(x) = ax + b and g(x) = cx + d are conjugated in
FAutTy then and only i ¢o(b) = ¢.(d).
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On the A-F-hypercenter of finite groups

VIACHASLAU MURASHKA

All groups considered here will be finite. Let InnG' < A be a group of automorphisms of a
group GG and F' be the canonical local definition of a local formation §. An A-composition factor
H/K of G is called A-§-central if A/C4(H/K) € F(p) for all p € n(H/K). The A-F-hypercenter
of G is the largest subgroup of G such that all its A-composition factors are A-§-central. This
subgroup always exists by Lemma 6.4 [1, p. 387|. It is denoted by Zz(G, A). If A = InnG, then
it is just the §-hypercenter Zz(G) of G. If § = D is the class of all nilpotent groups, then we
use Zoo (G, A) to denote the A-hypercenter Zyn(G, A) of G.

Recall that Syl,G is the set of all Sylow subgroups of G; G satisfies the Sylow tower property
if G has a normal Hall {p,...,p;}-subgroup for all 1 < i < n where p; > --- > p, are all
prime divisors of |G|. It is well known that a supersoluble group satisfies the Sylow tower
property. Recently series of hereditary saturated formations of groups that satisfy the Sylow
tower property have been constructed (see, [2, 3, 4]).

THEOREM 1. Let § be a hereditary saturated formation, F' be its canonical local definition
and N be an A-admissible subgroup of G where InnG < A < AutG that satisfies the Sylow tower
property. Then N < Zz(G, A) if and only if Na(P)/Ca(P) € F(p) for all P € Syl,(N) and
p e m(N).

Author obtained particular cases of this theorem for A = InnG and two formations of
supersoluble type (for example, see [5]). Recall that a group G is called strictly p-closed if
G/0,(G) is abelian of exponent dividing p — 1. We use U to denote the class of all supersoluble
groups.

COROLLARY 1 (R. Baer [6]). Let N be a normal subgroup of G. Then N < Zy(G) if and only
if N satisfies the Sylow tower property and Na(P)/Cq(P) is strictly p-closed for all P € Syl,(N)
and p € T(N).
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