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Class of differentiable invertible automatous with an

algorithmically solvable conjugacy problem

Denis Morozov

In this abstracts conjugacy problem in the group of finite-state automorphisms of rooted
binary tree investigated.

The research of group’s automatous is technically complicated. The presentation of group’s
automatous with p-adic functions provides a convenient technique.

The following results solve the conjugacy problem for differentiable finite-state group’s
automatous.

Lemma 1. Let
𝑎 = (𝑎1, 𝑎2) ∘ 𝜎, 𝑏 = (𝑏1, 𝑏2) ∘ 𝜎

𝑎′ = 𝑎1 ∘ 𝑎2, 𝑏′ = 𝑏1 ∘ 𝑏2
and 𝑎′ i 𝑏′ are conjugated in 𝐹𝐴𝑢𝑡𝑇2.

Then 𝑎 i 𝑏 are conjugated in 𝐹𝐴𝑢𝑡𝑇2.

Definition 1. We denote the function 𝜑𝑎(𝑥) as follows:

𝜑𝑎(𝑏) =

⎧⎪⎨⎪⎩
−𝑛− 1, 𝑎 = 1, 𝑏 = 2𝑛(2𝑡+ 1);

2𝑠, 𝑎 = 2𝑠(2𝑘 + 1) + 1, 𝑠 > 0, 𝑏 = 0;

(2𝑛 mod 2𝑠) + 2𝑠, 𝑎 = 2𝑠(2𝑘 + 1) + 1, 𝑠 > 0 𝑏 = 2𝑛(2𝑡+ 1).

Theorem 1. Two linear automorphisms 𝑓(𝑥) = 𝑎𝑥+ 𝑏 and 𝑔(𝑥) = 𝑐𝑥+ 𝑑 are conjugated in
𝐹𝐴𝑢𝑡𝑇2 then and only i 𝜑𝑎(𝑏) = 𝜑𝑐(𝑑).
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On the 𝐴-F-hypercenter of finite groups

Viachaslau Murashka

All groups considered here will be finite. Let Inn𝐺 ≤ 𝐴 be a group of automorphisms of a
group 𝐺 and 𝐹 be the canonical local definition of a local formation F. An 𝐴-composition factor
𝐻/𝐾 of 𝐺 is called 𝐴-F-central if 𝐴/𝐶𝐴(𝐻/𝐾) ∈ 𝐹 (𝑝) for all 𝑝 ∈ 𝜋(𝐻/𝐾). The 𝐴-F-hypercenter
of 𝐺 is the largest subgroup of 𝐺 such that all its 𝐴-composition factors are 𝐴-F-central. This
subgroup always exists by Lemma 6.4 [1, p. 387]. It is denoted by ZF(𝐺,𝐴). If 𝐴 = Inn𝐺, then
it is just the F-hypercenter ZF(𝐺) of 𝐺. If F = N is the class of all nilpotent groups, then we
use Z∞(𝐺,𝐴) to denote the 𝐴-hypercenter ZN(𝐺,𝐴) of 𝐺.

Recall that Syl𝑝𝐺 is the set of all Sylow subgroups of 𝐺; 𝐺 satisfies the Sylow tower property
if 𝐺 has a normal Hall {𝑝1, . . . , 𝑝𝑖}-subgroup for all 1 ≤ 𝑖 ≤ 𝑛 where 𝑝1 > · · · > 𝑝𝑛 are all
prime divisors of |𝐺|. It is well known that a supersoluble group satisfies the Sylow tower
property. Recently series of hereditary saturated formations of groups that satisfy the Sylow
tower property have been constructed (see, [2, 3, 4]).

Theorem 1. Let F be a hereditary saturated formation, 𝐹 be its canonical local definition
and 𝑁 be an 𝐴-admissible subgroup of 𝐺 where Inn𝐺 ≤ 𝐴 ≤ Aut𝐺 that satisfies the Sylow tower
property. Then 𝑁 ≤ ZF(𝐺,𝐴) if and only if 𝑁𝐴(𝑃 )/𝐶𝐴(𝑃 ) ∈ 𝐹 (𝑝) for all 𝑃 ∈ Syl𝑝(𝑁) and
𝑝 ∈ 𝜋(𝑁).

Author obtained particular cases of this theorem for 𝐴 = Inn𝐺 and two formations of
supersoluble type (for example, see [5]). Recall that a group 𝐺 is called strictly 𝑝-closed if
𝐺/O𝑝(𝐺) is abelian of exponent dividing 𝑝− 1. We use U to denote the class of all supersoluble
groups.

Corollary 1 (R. Baer [6]). Let 𝑁 be a normal subgroup of 𝐺. Then 𝑁 ≤ ZU(𝐺) if and only
if 𝑁 satisfies the Sylow tower property and 𝑁𝐺(𝑃 )/𝐶𝐺(𝑃 ) is strictly 𝑝-closed for all 𝑃 ∈ Syl𝑝(𝑁)
and 𝑝 ∈ 𝜋(𝑁).
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