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Method of residual and fixed subspaces was introduced by O’Meara.

Solvable Lie algebras of derivations of rank one

Anatoliy Petravchuk, Kateryna Sysak

Let K be a field of characteristic zero and 𝐴 = K[𝑥1, . . . , 𝑥𝑛] the polynomial ring over K. A K-
derivation𝐷 of 𝐴 is a K-linear mapping𝐷 : 𝐴→ 𝐴 that satisfies the rule: 𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏+𝑎𝐷(𝑏)
for all 𝑎, 𝑏 ∈ 𝐴. The set 𝑊𝑛(K) of all K-derivations of the polynomial ring 𝐴 forms a Lie
algebra over K. This Lie algebra is simultaneously a free module over 𝐴 with the standard basis
{ 𝜕
𝜕𝑥1
, 𝜕
𝜕𝑥2
, . . . , 𝜕

𝜕𝑥𝑛
}. Therefore, for each subalgebra 𝐿 of 𝑊𝑛(K) one can define the rank rank 𝐴𝐿

of 𝐿 over the ring 𝐴. Note that for any 𝑓 ∈ 𝐴 and 𝐷 ∈ 𝑊𝑛(K) a derivation 𝑓𝐷 is defined by
the rule: 𝑓𝐷(𝑎) = 𝑓 ·𝐷(𝑎) for all 𝑎 ∈ 𝐴.

Finite dimensional subalgebras 𝐿 of 𝑊𝑛(K) such that rank 𝐴𝐿 = 1 were described in [1]. We
study solvable subalgebras 𝐿 ⊆ 𝑊𝑛(K) of rank 1 over 𝐴 without restrictions on the dimension
over the field K.

Recall that a polynomial 𝑓 ∈ 𝐴 is said to be a Darboux polynomial for a derivation
𝐷 ∈ 𝑊𝑛(K) if 𝑓 ̸= 0 and 𝐷(𝑓) = 𝜆𝑓 for some polynomial 𝜆 ∈ 𝐴. The polynomial 𝜆 is called the
polynomial eigenvalue of 𝑓 for the derivation 𝐷. Some properties of Darboux polynomials and
their applications in the theory of differential equations can be found in [3]. Denote by 𝐴𝜆

𝐷 the
set of all Darboux polynomials for 𝐷 ∈ 𝑊𝑛(K) with the same polynomial eigenvalue 𝜆 and of
the zero polynomial. Obviously, the set 𝐴𝜆

𝐷 is a vector space over K. If 𝑉 is a subspace of 𝐴𝜆
𝐷

for any derivation 𝐷 ∈ 𝑊𝑛(K), then we denote by 𝑉 𝐷 the set of all derivations 𝑓𝐷, 𝑓 ∈ 𝑉.

Theorem 1. Let 𝐿 be a subalgebra of the Lie algebra 𝑊𝑛(K) of rank 1 over 𝐴 and dimK 𝐿 ≥ 2.
The Lie algebra 𝐿 is abelian if and only if there exist a derivation 𝐷 ∈ 𝑊𝑛(K) and a Darboux
polynomial 𝑓 for 𝐷 with the polynomial eigenvalue 𝜆 such that 𝐿 = 𝑉 𝐷 for some K-subspace
𝑉 ⊆ 𝐴𝜆

𝐷.

Using this result one can characterize nonabelian subalgebras of rank 1 over 𝐴 of the Lie
algebra 𝑊𝑛(K). For the Lie algebra ̃︁𝑊𝑛(K) of all K-derivations of the field K(𝑥1, 𝑥2, . . . , 𝑥𝑛) this
problem is simpler and was considered in [2].
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Classification of quasigroups according to their

parastrophic symmetry groups

Yevhen Pirus

Let 𝑄 be a set, a mapping 𝑓 : 𝑄3 → 𝑄 is called an invertible ternary operation (=function),
if it is invertible element in all semigroups (𝒪3;⊕

0
), (𝒪3;⊕

1
) and (𝒪3;⊕

2
), where 𝒪3 is the set of

all ternary operations defined on 𝑄 and
(𝑓 ⊕

1
𝑓1)(𝑥1, 𝑥2, 𝑥3) := 𝑓(𝑓1(𝑥1, 𝑥2, 𝑥3), 𝑥2, 𝑥3), (𝑓 ⊕

2
𝑓1)(𝑥1, 𝑥2, 𝑥3) := 𝑓(𝑥1, 𝑓1(𝑥1, 𝑥2, 𝑥3), 𝑥3),

(𝑓 ⊕
3
𝑓1)(𝑥1, 𝑥2, 𝑥3) := 𝑓(𝑥1, 𝑥2, 𝑓1(𝑥1, 𝑥2, 𝑥3)).

The set of all ternary invertible functions is denoted by ∆3. If an operation 𝑓 is invertible and
(14)𝑓 , (24)𝑓 , (34)𝑓 are its inverses in those semigroups, then the algebra (𝑄; 𝑓, (14)𝑓, (24)𝑓, (34)𝑓) (in
brief, (𝑄; 𝑓)) is called a ternary quasigroup [1]. The inverses are also invertible. All inverses to
inverses are called 𝜎-parastrophes of the operation 𝑓 and can be defined by

𝜎𝑓(𝑥1𝜎, 𝑥2𝜎, 𝑥3𝜎) = 𝑥4𝜎 :⇔ 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥4, 𝜎 ∈ 𝑆4,

where 𝑆4 denotes the group of all bijections of the set {0, 1, 2, 3}. Therefore in general, every
invertible operation has 24 parastrophes. Since parastrophes of a quasigroup satisfy the equalities
𝜎(𝜏𝑓) = 𝜎𝜏𝑓 , then the symmetric group 𝑆4 defines an action on the set ∆3. In particular, the fact
implies that the number of different parastrophes of an invertible operation is a factor of 24.
More precisely, it is equal to 24/|Ps(𝑓)|, where Ps(𝑓) denotes a stabilizer group of 𝑓 under this
action which is called parastrophic symmetry group of the operation 𝑓 .

Let P(𝐻) denote the class of all quasigroups whose parastrophic symmetry group contains
the group 𝐻 ∈ 𝑆4. A ternary quasigroup (𝑄; 𝑓) belongs to P(𝐻) if and only if 𝜎𝑓 = 𝑓 for all 𝜎
from a set 𝐺 of generators of the group 𝐻, therefore, the class of quasigroup P(𝐻) is a variety.

For every subgroup 𝐻 of the group 𝑆4 the variety P(𝐻) are described and its subvariety of
ternary group isotopes are found. For example, let

𝐷8 := {𝜄, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)} ≤ 𝑆4.

Theorem 1. A ternary quasigroup (𝑄; 𝑓) belong to the variety P(𝐷8) if and only if
𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑦, 𝑥, 𝑧), 𝑓(𝑥, 𝑦, 𝑓(𝑥, 𝑦, 𝑧)) = 𝑧, 𝑓(𝑧, 𝑓(𝑥, 𝑦, 𝑧), 𝑥) = 𝑦. (1)
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