CONTACT INFORMATION

Vasyl Petechuk

Department of Mathematics and Informatics, Institute of Postgraduate Education, City Uzhgorod, Ukraine *Email address:* vasil.petechuk@gmail.com

Yulia Petechuk

Department of Mathematics and Informatics, Transcarpathian Hungarian Institute by Ferenc Rakoczy II, City Beregovo, Ukraine *Email address*: vasil.petechuk@gmail.com

Key words and phrases. Residual and fixed modules, transvection, commutativ

Method of residual and fixed subspaces was introduced by O'Meara.

Solvable Lie algebras of derivations of rank one

ANATOLIY PETRAVCHUK, KATERYNA SYSAK

Let \mathbb{K} be a field of characteristic zero and $A = \mathbb{K}[x_1, \ldots, x_n]$ the polynomial ring over \mathbb{K} . A \mathbb{K} derivation D of A is a \mathbb{K} -linear mapping $D: A \to A$ that satisfies the rule: D(ab) = D(a)b + aD(b)for all $a, b \in A$. The set $W_n(\mathbb{K})$ of all \mathbb{K} -derivations of the polynomial ring A forms a Lie algebra over \mathbb{K} . This Lie algebra is simultaneously a free module over A with the standard basis $\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_n}\}$. Therefore, for each subalgebra L of $W_n(\mathbb{K})$ one can define the rank rank $_AL$ of L over the ring A. Note that for any $f \in A$ and $D \in W_n(\mathbb{K})$ a derivation fD is defined by the rule: $fD(a) = f \cdot D(a)$ for all $a \in A$.

Finite dimensional subalgebras L of $W_n(\mathbb{K})$ such that rank $_AL = 1$ were described in [1]. We study solvable subalgebras $L \subseteq W_n(\mathbb{K})$ of rank 1 over A without restrictions on the dimension over the field \mathbb{K} .

Recall that a polynomial $f \in A$ is said to be a Darboux polynomial for a derivation $D \in W_n(\mathbb{K})$ if $f \neq 0$ and $D(f) = \lambda f$ for some polynomial $\lambda \in A$. The polynomial λ is called the polynomial eigenvalue of f for the derivation D. Some properties of Darboux polynomials and their applications in the theory of differential equations can be found in [3]. Denote by A_D^{λ} the set of all Darboux polynomials for $D \in W_n(\mathbb{K})$ with the same polynomial eigenvalue λ and of the zero polynomial. Obviously, the set A_D^{λ} is a vector space over \mathbb{K} . If V is a subspace of A_D^{λ} for any derivation $D \in W_n(\mathbb{K})$, then we denote by VD the set of all derivations $fD, f \in V$.

THEOREM 1. Let L be a subalgebra of the Lie algebra $W_n(\mathbb{K})$ of rank 1 over A and $\dim_{\mathbb{K}} L \geq 2$. The Lie algebra L is abelian if and only if there exist a derivation $D \in W_n(\mathbb{K})$ and a Darboux polynomial f for D with the polynomial eigenvalue λ such that L = VD for some \mathbb{K} -subspace $V \subseteq A_D^{\lambda}$.

Using this result one can characterize nonabelian subalgebras of rank 1 over A of the Lie algebra $W_n(\mathbb{K})$. For the Lie algebra $\widetilde{W}_n(\mathbb{K})$ of all \mathbb{K} -derivations of the field $\mathbb{K}(x_1, x_2, \ldots, x_n)$ this problem is simpler and was considered in [2].

References

- I. V. Arzhantsev, E. A. Makedonskii, A. P. Petravchuk, *Finite-dimensional subalgebras in polynomial Lie algebras of rank one*, Ukrainian Math. Journal 63 (2011), no. 5, 827–832.
- Ie. O. Makedonskyi, A. P. Petravchuk, On nilpotent and solvable Lie algebras of derivations, Journal of Algebra 401 (2014), 245–257.

 A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994.

CONTACT INFORMATION

Anatoliy Petravchuk

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Email address: apetrav@gmail.com

Kateryna Sysak

Department of Information Systems and Technologies, National Transport University, Kyiv, Ukraine

Email address: sysakkya@gmail.com

Key words and phrases. Lie algebra, polynomial ring, derivation, rank of algebra, Darboux polynomial

Classification of quasigroups according to their parastrophic symmetry groups

Yevhen Pirus

Let Q be a set, a mapping $f: Q^3 \to Q$ is called an invertible ternary operation (=function), if it is invertible element in all semigroups $(\mathcal{O}_3; \bigoplus_0)$, $(\mathcal{O}_3; \bigoplus_1)$ and $(\mathcal{O}_3; \bigoplus_2)$, where \mathcal{O}_3 is the set of all ternary operations defined on Q and

$$(f \bigoplus_{1} f_{1})(x_{1}, x_{2}, x_{3}) := f(f_{1}(x_{1}, x_{2}, x_{3}), x_{2}, x_{3}), \quad (f \bigoplus_{2} f_{1})(x_{1}, x_{2}, x_{3}) := f(x_{1}, f_{1}(x_{1}, x_{2}, x_{3}), x_{3}),$$
$$(f \bigoplus_{1} f_{1})(x_{1}, x_{2}, x_{3}) := f(x_{1}, x_{2}, f_{1}(x_{1}, x_{2}, x_{3})).$$

The set of all ternary invertible functions is denoted by Δ_3 . If an operation f is invertible and ${}^{(14)}f$, ${}^{(24)}f$, ${}^{(34)}f$ are its inverses in those semigroups, then the algebra $(Q; f, {}^{(14)}f, {}^{(24)}f, {}^{(34)}f)$ (in brief, (Q; f)) is called a *ternary quasigroup* [1]. The inverses are also invertible. All inverses to inverses are called σ -parastrophes of the operation f and can be defined by

$${}^{\sigma}\!f(x_{1\sigma}, x_{2\sigma}, x_{3\sigma}) = x_{4\sigma} \quad \Leftrightarrow \quad f(x_1, x_2, x_3) = x_4, \quad \sigma \in S_4,$$

where S_4 denotes the group of all bijections of the set $\{0, 1, 2, 3\}$. Therefore in general, every invertible operation has 24 parastrophes. Since parastrophes of a quasigroup satisfy the equalities $\sigma(\tau f) = \sigma f$, then the symmetric group S_4 defines an action on the set Δ_3 . In particular, the fact implies that the number of different parastrophes of an invertible operation is a factor of 24. More precisely, it is equal to 24/|Ps(f)|, where Ps(f) denotes a stabilizer group of f under this action which is called *parastrophic symmetry group* of the operation f.

Let $\mathfrak{P}(H)$ denote the class of all quasigroups whose parastrophic symmetry group contains the group $H \in S_4$. A ternary quasigroup (Q; f) belongs to $\mathfrak{P}(H)$ if and only if ${}^{\sigma}f = f$ for all σ from a set G of generators of the group H, therefore, the class of quasigroup $\mathfrak{P}(H)$ is a variety.

For every subgroup H of the group S_4 the variety $\mathfrak{P}(H)$ are described and its subvariety of ternary group isotopes are found. For example, let

$$D_8 := \{\iota, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)\} \le S_4$$

THEOREM 1. A ternary quasigroup (Q; f) belong to the variety $\mathfrak{P}(D_8)$ if and only if

$$f(x, y, z) = f(y, x, z), \quad f(x, y, f(x, y, z)) = z, \quad f(z, f(x, y, z), x) = y.$$
(1)