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On similarity of tuples of matrices over a field

VOLODYMYR PROKIP

Let F be a field. Denote by F,, ., the set of m x n matrices over F and by F,,.,[21, 22, , Z4)
the set of m x n matrices over the polynomial ring F[xy, 29, ,x,]. In what follows, we denote
by I,, the n x n identity matrix and by 0, the zero m x n matrix. The Kronecker product of
matrices A = [ @i ] € F,.x» and B is denoted by A ® B = [ a;; B } )

Two tuples of n x n matrices A = {A;, Ay, ..., Ay} and B = {By, Bs, ..., By} over a field F
are said to be simultaneously similar if there exists a nonsingular matrix U € F, .., such that
A; =U"'B;U for all i = 1,2,..., k. The task of classifying square matrices up to similarity is
one of the core and oldest problems in linear algebra (see [1], [2], [3] and references therein),
and it is generally acknowledged that it is also one of the most hopeless problems already for
k = 2. For given matrices A;, B; € F,,«,, we define matrices

M,
M,
Mi:[Ai®[n—[n®BiT}EFn2Xn2,i:1,2,...,/{7; and M = . € Frp2xnz.
M,
THEOREM 1. If two tuples of nxn matrices A = {Ay, A, ..., Ay} and B = {By, Bs, ..., By}
over a field F are simultaneously similar then rank M < n?.

Let rank M = n? — r, where r € N. For the matrix M there exists a nonsingular matrix
U € F,2y,2 such that MU = [ H Opp2, }, where H € Fyp2x(n2—p). Put U = [ U, U, ], where

Uy € F,2,,. For independent variables x1, o, ..., x, we construct the vector
T VA(T)
U, I:Z = VZ(E) ,  where Vi(ZT) =Vi(zy,...,2,) € Fpi[z1, 20, ..., 2,]
o) @
THEOREM 2. Two tuples of n x n matrices A = {Ay, A, ..., Ar} and B = {By, Bs, ..., By}
Vi (z)
over a field F of characteristic 0 are simultaneously similar if and only if the matriz Vi (7)
V. (7)

18 monsingular.
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Extensions of finite fields and some class of special

p-groups

OLGA PYLIAVSKA

A finite p-group G is called special if the center Z(G), the commutator subgroup G’ and the
Frattini subgroup ®(G) coincide (|4]).

Special p-groups have nilpotency class 2. For these groups Z(G) and G/G’ are elementary
abelian and exponent of G is p or p>.

The special p-groups of exponent p admit some matrix presentation over the field F, = Z/pZ
(see [1], [5], [6]), which gives possibility for their classification.

We define some class of special p-groups of exponent < p? which admit the calculation
in the extension of F,. of finite field F,. The groups of investigation has order p*, where
n = ged(n,p — 1) and |G'| = p™.

For small n and arbitrary prime p are obtained

e full classification of these groups up to isomorphism and their enumeration;
e the structure of maximal abelian normal subgroups and corresponding factor-groups;
e automorphism groups.
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