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As shown in [3] the set 87 of all n-multiply o-local formations forms a complete algebraic
modullar lattice.

THEOREM 1. The lattice S of all n-multiply o-local formations is a complete sublattice of
the lattice of all n-multiply saturated formations.

In the case when n = 1, we get from Theorem 1 the following resalt.

COROLLARY 1. The lattice S° of all o-local formations is a complete sublattice of the lattice
of all saturated formations.
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Elementary reduction of idempotent matrices over
semiabelian rings

ANDRII SAHAN

A ring R is a associative ring with nonzero identity. An elementary n x n matrix with entries
from R is a square n x n matrix of one of the types below:
1) diagonal matrix with invertible diagonal entries;
2) identity matrix with one additional non diagonal nonzero entry;
3) permutation matrix, i.e. result of switching some columns or rows in the identity matrix.
A ring R is called a ring with elementary reduction of matrices in case of an arbitrary matrix
over R possesses elementary reduction, i.e.for an arbitrary matrix A over the ring R there exist
such elementary matrices over R, Py, ..., Py, Q1,...,Q of respectful size that

PP A-Qr--- Qs = diag(e,...,5,0,...,0),
where Re; ;1R C Re; Neg;Rforany i =1,...,r — 1.
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A ring R is called FID-ring in case of an indempotent matrix over R possesses elementary-
idempotent reduction, i.e.for an indempotent matrix A over the ring R there exist such elementary
matrices over R, Uy, ..., U; of respectful size that

Ul"'Ul'A'<U1"'Ul>_1 :diag(dlad%"‘7d7‘707“'70)7

where [,r € N.

An idempotent e in a ring R is called right (left) semicentral if for every x € R, ex = exe
(xe = exe). And the set of right (left) semicentral idempotents of R is denoted by S,.(R) (Si(R)).
We define a ring R semiabelian if Id(R) = S,(R) U S;(R).

All other necessary definitions and facts can be found in [1, 2, 3].

THEOREM 1. Let R be an semiabelian ring and A be an n x n idempotent matrixz over R. If
there exist elementary matrices Py, ..., Py and Q1,...,Qs such that P;--- P, - A-Q1--- Qs is a
diagonal matriz, then there is elementary matrices Uy, ..., U; such that Uy ---U;- A-(Uy - - - Ul)_1
1s diagonal matrix.

THEOREM 2. Let R be an semiabelian ring. Then a ring with elementary reduction of
matrices is an EID-ring.

THEOREM 3. The following are equivalent for a semialelian ring R:

(a) Each idempotent matriz over R is diagonalizable under a elementary transformation.
(b) Each idempotent matriz over R has a charateristic vector.

THEOREM 4. Let R be an semiabelian ring, N be the set of nilpotents in R, and I be an
ideal in R with I C N. Then R/I is an EID-ring, if and only if R is an E1D-ring.
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Higher power moments of the Riesz mean error term of
hybrid symmetric square L-function

OLGA SAVASTRU

Let f(z) = > .7, ay(n)e*™™* be a holomorphic cusp form of even weight & > 12 for the full
modular group SL(2,Z), z € H, H = {z € C|Im(z) > 0} is the upper half plane. We suppose
that f(z) is a normalized eigenfunction for the Hecke operators T'(n)(n > 1) with af(1) = 1.
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