A ring R is called *EID*-ring in case of an indempotent matrix over R possesses elementaryidempotent reduction, i.e.for an indempotent matrix A over the ring R there exist such elementary matrices over R, U_1, \ldots, U_l of respectful size that

$$U_1 \cdots U_l \cdot A \cdot (U_1 \cdots U_l)^{-1} = diag(d_1, d_2, \dots, d_r, 0, \dots, 0)$$

where $l, r \in \mathbb{N}$.

An idempotent e in a ring R is called right (left) semicentral if for every $x \in R$, ex = exe(xe = exe). And the set of right (left) semicentral idempotents of R is denoted by $S_r(R)$ ($S_l(R)$). We define a ring R semiabelian if $Id(R) = S_r(R) \cup S_l(R)$.

All other necessary definitions and facts can be found in [1, 2, 3].

THEOREM 1. Let R be an semiabelian ring and A be an $n \times n$ idempotent matrix over R. If there exist elementary matrices P_1, \ldots, P_k and Q_1, \ldots, Q_s such that $P_1 \cdots P_k \cdot A \cdot Q_1 \cdots Q_s$ is a diagonal matrix, then there is elementary matrices U_1, \ldots, U_l such that $U_1 \cdots U_l \cdot A \cdot (U_1 \cdots U_l)^{-1}$ is diagonal matrix.

THEOREM 2. Let R be an semiabelian ring. Then a ring with elementary reduction of matrices is an EID-ring.

THEOREM 3. The following are equivalent for a semialelian ring R:

- (a) Each idempotent matrix over R is diagonalizable under a elementary transformation.
- (b) Each idempotent matrix over R has a charateristic vector.

THEOREM 4. Let R be an semiabelian ring, N be the set of nilpotents in R, and I be an ideal in R with $I \subseteq N$. Then R/I is an EID-ring, if and only if R is an EID-ring.

References

- P. Ara, K.R. Goodearl, K.C. O'Meara, E. Pardo, *Diagonalization of matrices over regular rings*, Lin. Alg. Appl. 265 (1997), 147–163.
- 2. W. Chen, On semiabelian π -regular rings, Intern. J. Math. Sci. 23 (2007), 1–10.
- 3. A. Steger, Diagonability of idempotent matrices, Pac. J. Math. 19 (1966), no. 3, 535–541.
- O. M. Romaniv, A. V. Sagan, O. I. Firman Elementary reduction of idempotent matrices, Appl. Probl. Mech. and Math. 14 (2016), 7–11.

CONTACT INFORMATION

Andrii Sahan

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, Lviv, Ukraine

Email address: andrijsagan@gmail.com

Key words and phrases. Semiabelian ring, elementary matrices, ring with elementary reduction of matrices, *EID*-ring

Higher power moments of the Riesz mean error term of hybrid symmetric square L-function

Olga Savastru

Let $f(z) = \sum_{n=1}^{\infty} a_f(n) e^{2\pi i n z}$ be a holomorphic cusp form of even weight $k \ge 12$ for the full modular group $SL(2,\mathbb{Z}), z \in H, H = \{z \in \mathbb{C} | Im(z) > 0\}$ is the upper half plane. We suppose that f(z) is a normalized eigenfunction for the Hecke operators $T(n)(n \ge 1)$ with $a_f(1) = 1$. In [1], Shimura introduced the function $L(s, sym^2 f, \chi)$. For an arbitrary primitive Dirichlet character $\chi \mod d$, the hybrid symmetric square L-function attached to f is defined as the following Euler product:

$$L(s, sym^{2}f, \chi) := \prod_{p} (1 - \alpha_{f}^{2}(p)\chi(p)p^{-s})(1 - \chi(p)p^{-s})^{-1} \times (1 - \overline{\alpha}_{f}^{2}(p)\chi(p)p^{-s})$$

for $\Re s > 1$.

Let $\Delta_{\rho}(t, sym^2 f, \chi)$ be the error term of the Riesz mean of the hybrid symmetric square L-function. We study the higher power moments of $\Delta_{\rho}(t, sym^2 f, \chi)$. Particularly, for $\rho = 1/2$, we prove the following result.

THEOREM 1. Let X > 1 be a real number. For any fixed $\epsilon > 0$, we have that

$$\int_{0}^{X} \Delta_{\frac{1}{2}}^{h}(t, sym^{2}f, \chi) dt = \frac{6B_{\frac{1}{2}}(h, c)d^{\frac{3h}{2}}}{(3+2h)(2\pi)^{\frac{3h}{2}}3^{\frac{h}{2}}} X^{\frac{2}{3}h+1} + O(X^{1+\frac{2}{3}h-\lambda_{\frac{1}{2}}(h,6)+\epsilon}d^{\frac{3h}{2}+\epsilon}),$$

holds for h = 3, 4, 5, where the O-constant depends on h and ϵ .

References

1. G. Shimura, On the holomorphy of certain Dirichlet series, Proc.London Math. Soc., 31 (1975), 79–98.

CONTACT INFORMATION

Olga Savastru

Department of Computer Algebra and Discrete Mathematics, I.I. Mechnikov Odessa National University, Odessa, Ukraine

Email address: savolga777@gmail.com

Key words and phrases. Holomorphic cusp forms, symmetric square L-function

Connection between automatic sequences and endomorphisms of rooted trees via *d*-adic dynamics

DMYTRO M. SAVCHUK, ROSTISLAV I. GRIGORCHUK

The ring \mathbb{Z}_d of *d*-adic integers has a natural interpretation as the boundary of a rooted *d*-ary tree T_d . Endomorphisms of this tree are in one-to-one correspondence with 1-Lipschitz mappings from \mathbb{Z}_d to itself. Therefore, one can use the language of endomorphisms of rooted trees and, in particular, the language and techniques of Mealy automata (see, for example, [5]), to study such mappings. For example, polynomial transformations of \mathbb{Z}_d in this context were studied in [1]. Each continuous transformation $f: \mathbb{Z}_d \to \mathbb{Z}_d$ can be decomposed into its van der Put series

$$f(x) = \sum_{n \ge 0} B_n^f \chi_n(x),$$

where $(B_n^f)_{n\geq 0} \subset \mathbb{Z}_d$ is a unique sequence of *d*-adic integers, and $\chi_n(x)$ is the characteristic function of the cylindrical set consisting of all *d*-adic integers with prefix $[n]_d$ (here by $[n]_d$ we mean the image of *n* in \mathbb{Z}_d under the natural embedding $\mathbb{Z} \to \mathbb{Z}_d$ that is obtained by reversing the *d*-ary expansion of *n*). The coefficients B_n^f are called the *van der Put coefficients* of *f* and are computed as follows:

$$B_n^f = \begin{cases} f(n), & \text{if } 0 \le n < d, \\ f(n) - f(n_{-}), & \text{if } n \ge d, \end{cases}$$
(1)