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In [1], Shimura introduced the function 𝐿(𝑠, 𝑠𝑦𝑚2𝑓, 𝜒). For an arbitrary primitive Dirichlet
character 𝜒 mod 𝑑, the hybrid symmetric square L-function attached to 𝑓 is defined as the
following Euler product:

𝐿(𝑠, 𝑠𝑦𝑚2𝑓, 𝜒) :=
∏︁
𝑝

(1− 𝛼2
𝑓 (𝑝)𝜒(𝑝)𝑝−𝑠)(1− 𝜒(𝑝)𝑝−𝑠)−1

×(1− 𝛼2
𝑓 (𝑝)𝜒(𝑝)𝑝−𝑠)

for ℜ𝑠 > 1.
Let ∆𝜌(𝑡, 𝑠𝑦𝑚

2𝑓, 𝜒) be the error term of the Riesz mean of the hybrid symmetric square
L-function. We study the higher power moments of ∆𝜌(𝑡, 𝑠𝑦𝑚

2𝑓, 𝜒). Particularly, for 𝜌 = 1/2,
we prove the following result.

Theorem 1. Let 𝑋 > 1 be a real number. For any fixed 𝜖 > 0, we have that∫︁ 𝑋
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holds for h = 3, 4, 5, where the 𝑂-constant depends on ℎ and 𝜖.
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Connection between automatic sequences and

endomorphisms of rooted trees via 𝑑-adic dynamics

Dmytro M. Savchuk, Rostislav I. Grigorchuk

The ring Z𝑑 of 𝑑-adic integers has a natural interpretation as the boundary of a rooted 𝑑-ary
tree 𝑇𝑑. Endomorphisms of this tree are in one-to-one correspondence with 1-Lipschitz mappings
from Z𝑑 to itself. Therefore, one can use the language of endomorphisms of rooted trees and, in
particular, the language and techniques of Mealy automata (see, for example, [5]), to study such
mappings. For example, polynomial transformations of Z𝑑 in this context were studied in [1].
Each continuous transformation 𝑓 : Z𝑑 → Z𝑑 can be decomposed into its van der Put series

𝑓(𝑥) =
∑︁
𝑛≥0

𝐵𝑓
𝑛𝜒𝑛(𝑥),

where (𝐵𝑓
𝑛)𝑛≥0 ⊂ Z𝑑 is a unique sequence of 𝑑-adic integers, and 𝜒𝑛(𝑥) is the characteristic

function of the cylindrical set consisting of all 𝑑-adic integers with prefix [𝑛]𝑑 (here by [𝑛]𝑑 we
mean the image of 𝑛 in Z𝑑 under the natural embedding Z→ Z𝑑 that is obtained by reversing
the 𝑑-ary expansion of 𝑛). The coefficients 𝐵𝑓

𝑛 are called the van der Put coefficients of 𝑓 and
are computed as follows:

𝐵𝑓
𝑛 =

{︂
𝑓(𝑛), if 0 ≤ 𝑛 < 𝑑,
𝑓(𝑛)− 𝑓(𝑛_), if 𝑛 ≥ 𝑑,

(1)
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where for 𝑛 = 𝑥0+𝑥1𝑑+· · ·+𝑥𝑡𝑑𝑡 with 𝑥𝑡 ̸= 0 we define 𝑛_ = 𝑥0+𝑥1·𝑑+· · ·+𝑥𝑡−1𝑑
𝑡−1 = 𝑛mod 𝑑𝑡.

In the case when 𝑓 is 1-Lipschitz, it was shown in [4] that 𝐵𝑓
𝑛 = 𝑏𝑓𝑛𝑑

⌊log𝑑 𝑛⌋ with 𝑏𝑓𝑛 ∈ Z𝑑. We
will call the coefficients 𝑏𝑓𝑛 the reduced van der Put coefficients of 𝑓 .

Anashin in [3] proved that a 1-Lipschitz transformation of Z𝑑 defines a finite state endomor-
phism of 𝑇𝑑 (i.e., can be defined by a finite Mealy automaton) if and only if the sequence of its
reduced van der Put coefficients is made of eventually periodic 𝑑-adic integers and is 𝑑-automatic
(i.e., can be defined by a finite Moore automaton, see Allouche’s book [2] for details). We give
an explicit constructive connection between the Moore automata accepting such a sequence and
the Mealy automata inducing the corresponding endomorphism. This, in particular, gives a
way to construct Mealy automata of mappings that are defined by automatic sequences, like
Thue-Morse, for example.

After explicitly describing the connection between Mealy and Moore automata we obtain
the following results.

Theorem 1. Let 𝑔 be an endomorphism of 𝑇𝑑 defined by a finite Mealy automaton 𝒜. Let also
(𝑏𝑔𝑛)𝑛≥0 be the (automatic) sequence of the reduced van der Put coefficients of a transformation
Z𝑑 → Z𝑑 induced by 𝑔. Then the underlying oriented graph of the Moore automaton ℬ defining
(𝑏𝑔𝑛)𝑛≥0 (possibly non-minimized) covers the underlying oriented graph of 𝒜.

Theorem 2. Let 𝑔 be an endomorphism of 𝑇𝑑 induced by a transformation of Z𝑑 with
the sequence of van der Put coefficients defined by finite Moore automaton ℬ. Then the
underlying oriented graph of the Mealy automaton 𝒜 defining 𝑔 (possibly non-minimized) covers
the underlying oriented graph of ℬ.

For example, the figure below shows the Mealy automaton defining the lamplighter group
ℒ = ⟨𝑝, 𝑞⟩, and the corresponding Moore automaton defining the sequence of reduced van der
Put coefficients of the 𝑑-adic transformation induced by its generator 𝑝.
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Linear groups saturated by subgroups of finite central

dimension

Mykola N. Semko, Liliia V. Skaskiv, O.A. Yarovaya

Let 𝐹 be a field, 𝐴 be a vector space over 𝐹 and 𝐺 be a subgroup of GL(𝐹,𝐴). We say
that 𝐺 has a dense family of subgroups, having finite central dimension, if for every pair of
subgroups 𝐻, 𝐾 of 𝐺 such that 𝐻 6 𝐾 and 𝐻 is not maximal in 𝐾 there exists a subgroup
𝐿 of finite central dimension such that 𝐻 6 𝐿 6 𝐾 (we can note that 𝐿 can match with one
of the subgroups 𝐻 or 𝐾). We study the locally soluble linear groups with a dense family of
subgroups, having finite central dimension.

Theorem 1. Let 𝐹 be a field, 𝐴 be a vector space over 𝐹 , having infinite dimension, and 𝐺
be a locally soluble subgroup of GL(𝐹,𝐴). Suppose that 𝐺 has infinite central dimension. If 𝐺
has a dense family of subgroups, having finite central dimension, then 𝐺 is a group of one of the
following types:

(i) 𝐺 is cyclic or quasicyclic 𝑝-group for some prime 𝑝;
(ii) 𝐺 = 𝐾 ×𝐿 where 𝐾 is cyclic or quasicyclic 𝑝-group for some prime 𝑝 and 𝐿 is a group

of prime order;
(iii) 𝐺 = ⟨𝑎, 𝑏| |𝑎| = 2𝑛, |𝑏| = 2, 𝑎𝑏 = 𝑎𝑡 where 𝑡 = 1 + 2𝑛−1, 𝑛 > 3⟩;
(iv) 𝐺 = ⟨𝑎, 𝑏| |𝑎| = 2𝑛, |𝑏| = 2, 𝑎𝑏 = 𝑎𝑡 where 𝑡 = −1 + 2𝑛−1, 𝑛 > 3⟩;
(v) 𝐺 = ⟨𝑎, 𝑏| |𝑎| = 2𝑛, |𝑏| = 2, 𝑎𝑏 = 𝑎−1⟩;

(vi) 𝐺 = ⟨𝑎, 𝑏| |𝑎| = 2𝑛, 𝑏2 = 𝑎𝑡 where 𝑡 = 2𝑛−1, 𝑎𝑏 = 𝑎−1⟩;
(vii) 𝐺 = ⟨𝑎, 𝑏| |𝑎| = 𝑝𝑛, |𝑏| = 𝑝, 𝑎𝑏 = 𝑎𝑡, 𝑡 = 1 + 𝑝𝑛−1, 𝑛 > 2⟩, 𝑝 is an odd prime;
(viii) 𝐺 = ⟨𝑎⟩h ⟨𝑏⟩, |𝑎| = 𝑝𝑛 where 𝑝 is an odd prime, |𝑏| = 𝑞, 𝑞 is a prime, 𝑞 ̸= 𝑝;
(ix) 𝐺 = 𝐵 h ⟨𝑎⟩, |𝑎| = 𝑝𝑛, 𝐵 = 𝐶𝐺(𝐵) is an elementary abelian 𝑞-subgroup, 𝑝 and 𝑞 are

primes, 𝑝 ̸= 𝑞, 𝐵 is a minimal normal subgroup of 𝐺;
(x) 𝐺 = 𝐾 h ⟨𝑏⟩, where 𝐾 is a quasicyclic 2-subgroup, |𝑏| = 2 and 𝑥𝑏 = 𝑥−1 for each

element 𝑥 ∈ 𝐾;
(xi) 𝐺 = 𝐾⟨𝑏⟩, where 𝐾 = ⟨𝑎𝑛| 𝑎𝑝1 = 1, 𝑎𝑝𝑛+1 = 𝑎𝑛, 𝑛 ∈ N⟩ is a quasicyclic 2-subgroup,

𝑏2 = 𝑎1 and 𝑎𝑏𝑛 = 𝑎−1
𝑛 , 𝑛 > 2;

(xii) 𝐺 = 𝐾 h ⟨𝑏⟩, where 𝐾 is a quasicyclic 𝑝-subgroup, 𝑝 is an odd prime, 𝐾 = 𝐶𝐺(𝐾),
|𝑏| = 𝑞 is a prime such that 𝑝 ̸= 𝑞;
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