In [1], Shimura introduced the function $L(s, sym^2 f, \chi)$. For an arbitrary primitive Dirichlet character χ mod d, the hybrid symmetric square L-function attached to f is defined as the following Euler product:

$$\begin{split} L(s, sym^2 f, \chi) := \prod_p (1 - \alpha_f^2(p) \chi(p) p^{-s}) (1 - \chi(p) p^{-s})^{-1} \\ \times (1 - \overline{\alpha}_f^2(p) \chi(p) p^{-s}) \end{split}$$

for $\Re s > 1$.

Let $\Delta_{\rho}(t, sym^2 f, \chi)$ be the error term of the Riesz mean of the hybrid symmetric square L-function. We study the higher power moments of $\Delta_{\rho}(t, sym^2 f, \chi)$. Particularly, for $\rho = 1/2$, we prove the following result.

Theorem 1. Let X > 1 be a real number. For any fixed $\epsilon > 0$, we have that

$$\int_0^X \Delta_{\frac{1}{2}}^h(t,sym^2f,\chi)dt = \frac{6B_{\frac{1}{2}}(h,c)d^{\frac{3h}{2}}}{(3+2h)(2\pi)^{\frac{3h}{2}}3^{\frac{h}{2}}}X^{\frac{2}{3}h+1} + O(X^{1+\frac{2}{3}h-\lambda_{\frac{1}{2}}(h,6)+\epsilon}d^{\frac{3h}{2}+\epsilon}),$$

holds for h = 3, 4, 5, where the O-constant depends on h and ϵ .

References

1. G. Shimura, On the holomorphy of certain Dirichlet series, Proc.London Math. Soc., 31 (1975), 79–98.

CONTACT INFORMATION

Olga Savastru

Department of Computer Algebra and Discrete Mathematics, I.I. Mechnikov Odessa National University, Odessa, Ukraine

Email address: savolga777@gmail.com

Key words and phrases. Holomorphic cusp forms, symmetric square L-function

Connection between automatic sequences and endomorphisms of rooted trees via d-adic dynamics

DMYTRO M. SAVCHUK, ROSTISLAV I. GRIGORCHUK

The ring \mathbb{Z}_d of d-adic integers has a natural interpretation as the boundary of a rooted d-ary tree T_d . Endomorphisms of this tree are in one-to-one correspondence with 1-Lipschitz mappings from \mathbb{Z}_d to itself. Therefore, one can use the language of endomorphisms of rooted trees and, in particular, the language and techniques of Mealy automata (see, for example, [5]), to study such mappings. For example, polynomial transformations of \mathbb{Z}_d in this context were studied in [1]. Each continuous transformation $f: \mathbb{Z}_d \to \mathbb{Z}_d$ can be decomposed into its van der Put series

$$f(x) = \sum_{n \ge 0} B_n^f \chi_n(x),$$

where $(B_n^f)_{n\geq 0} \subset \mathbb{Z}_d$ is a unique sequence of d-adic integers, and $\chi_n(x)$ is the characteristic function of the cylindrical set consisting of all d-adic integers with prefix $[n]_d$ (here by $[n]_d$ we mean the image of n in \mathbb{Z}_d under the natural embedding $\mathbb{Z} \to \mathbb{Z}_d$ that is obtained by reversing the d-ary expansion of n). The coefficients B_n^f are called the $van\ der\ Put\ coefficients$ of f and are computed as follows:

$$B_n^f = \begin{cases} f(n), & \text{if } 0 \le n < d, \\ f(n) - f(n_{-}), & \text{if } n \ge d, \end{cases}$$
 (1)

where for $n = x_0 + x_1 d + \dots + x_t d^t$ with $x_t \neq 0$ we define $n_- = x_0 + x_1 \cdot d + \dots + x_{t-1} d^{t-1} = n \mod d^t$. In the case when f is 1-Lipschitz, it was shown in [4] that $B_n^f = b_n^f d^{\lfloor \log_d n \rfloor}$ with $b_n^f \in \mathbb{Z}_d$. We will call the coefficients b_n^f the reduced van der Put coefficients of f.

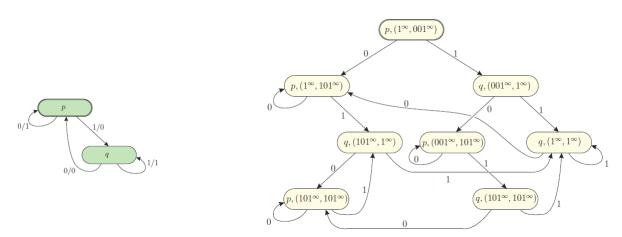
Anashin in [3] proved that a 1-Lipschitz transformation of \mathbb{Z}_d defines a finite state endomorphism of T_d (i.e., can be defined by a finite Mealy automaton) if and only if the sequence of its reduced van der Put coefficients is made of eventually periodic d-adic integers and is d-automatic (i.e., can be defined by a finite Moore automaton, see Allouche's book [2] for details). We give an explicit constructive connection between the Moore automata accepting such a sequence and the Mealy automata inducing the corresponding endomorphism. This, in particular, gives a way to construct Mealy automata of mappings that are defined by automatic sequences, like Thue-Morse, for example.

After explicitly describing the connection between Mealy and Moore automata we obtain the following results.

THEOREM 1. Let g be an endomorphism of T_d defined by a finite Mealy automaton \mathcal{A} . Let also $(b_n^g)_{n\geq 0}$ be the (automatic) sequence of the reduced van der Put coefficients of a transformation $\mathbb{Z}_d \to \mathbb{Z}_d$ induced by g. Then the underlying oriented graph of the Moore automaton \mathcal{B} defining $(b_n^g)_{n\geq 0}$ (possibly non-minimized) covers the underlying oriented graph of \mathcal{A} .

THEOREM 2. Let g be an endomorphism of T_d induced by a transformation of \mathbb{Z}_d with the sequence of van der Put coefficients defined by finite Moore automaton \mathcal{B} . Then the underlying oriented graph of the Mealy automaton \mathcal{A} defining g (possibly non-minimized) covers the underlying oriented graph of \mathcal{B} .

For example, the figure below shows the Mealy automaton defining the lamplighter group $\mathcal{L} = \langle p, q \rangle$, and the corresponding Moore automaton defining the sequence of reduced van der Put coefficients of the d-adic transformation induced by its generator p.



References

- 1. Elsayed Ahmed and Dmytro Savchuk, Endomorphisms of regular rooted trees induced by the action of polynomials on the ring \mathbb{Z}_d of d-adic integers, submitted, Preprint: arxiv:1711.06735, 2018.
- 2. Jean-Paul Allouche and Jeffrey Shallit, *Automatic sequences*, Cambridge University Press, Cambridge, 2003, Theory, applications, generalizations. MR 1997038
- 3. V. Anashin, Automata finiteness criterion in terms of van der Put series of automata functions, p-Adic Numbers Ultrametric Anal. Appl. 4 (2012), no. 2, 151–160. MR 2915627
- 4. V. S. Anashin, A. Yu. Khrennikov, and E. I. Yurova, Characterization of ergodic p-adic dynamical systems in terms of the van der Put basis, Dokl. Akad. Nauk 438 (2011), no. 2, 151–153. MR 2857398
- R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 134–214. MR MR1841755 (2002m:37016)

CONTACT INFORMATION

Dmytro M. Savchuk

Department of Mathematics and Statistics, University of South Florida, Tampa, FL, 33620, USA

Email address: savchuk@usf.edu

URL: http://savchuk.myweb.usf.edu/

Rostislav I. Grigorchuk

Department of Mathematics, Texas A&M University, College Station, TX, 77843, USA

Email address: grigorch@math.tamu.edu

URL: https://www.math.tamu.edu/~grigorch/

Key words and phrases. p-adic numbers, groups generated by automata, Mealy automata, Moore Automata, automatic sequences

This research was partially supported by the Simons Foundation through Collaboration Grant #317198.

Linear groups saturated by subgroups of finite central dimension

Mykola N. Semko, Liliia V. Skaskiv, O.A. Yarovaya

Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that $H \leq K$ and H is not maximal in K there exists a subgroup L of finite central dimension such that $H \leq L \leq K$ (we can note that L can match with one of the subgroups H or K). We study the locally soluble linear groups with a dense family of subgroups, having finite central dimension.

Theorem 1. Let F be a field, A be a vector space over F, having infinite dimension, and G be a locally soluble subgroup of GL(F,A). Suppose that G has infinite central dimension. If G has a dense family of subgroups, having finite central dimension, then G is a group of one of the following types:

- (i) G is cyclic or quasicyclic p-group for some prime p;
- (ii) $G = K \times L$ where K is cyclic or quasicyclic p-group for some prime p and L is a group of prime order;
- (iii) $G = \langle a, b | |a| = 2^n, |b| = 2, a^b = a^t \text{ where } t = 1 + 2^{n-1}, n \geqslant 3 \rangle;$
- (iv) $G = \langle a, b | |a| = 2^n, |b| = 2, a^b = a^t \text{ where } t = -1 + 2^{n-1}, n \ge 3 \rangle$;
- (v) $G = \langle a, b | |a| = 2^n, |b| = 2, a^b = a^{-1} \rangle;$
- (vi) $G = \langle a, b | |a| = 2^n, b^2 = a^t \text{ where } t = 2^{n-1}, a^b = a^{-1} \rangle;$
- (vii) $G = \langle a, b | |a| = p^n, |b| = p, a^b = a^t, t = 1 + p^{n-1}, n \geqslant 2 \rangle$, p is an odd prime;
- (viii) $G = \langle a \rangle \setminus \langle b \rangle$, $|a| = p^n$ where p is an odd prime, |b| = q, q is a prime, $q \neq p$;
- (ix) $G = B \setminus \langle a \rangle$, $|a| = p^n$, $B = C_G(B)$ is an elementary abelian q-subgroup, p and q are primes, $p \neq q$, B is a minimal normal subgroup of G;
- (x) $G = K \setminus \langle b \rangle$, where K is a quasicyclic 2-subgroup, |b| = 2 and $x^b = x^{-1}$ for each element $x \in K$;
- (xi) $G = K\langle b \rangle$, where $K = \langle a_n | a_1^p = 1, a_{n+1}^p = a_n, n \in \mathbb{N} \rangle$ is a quasicyclic 2-subgroup, $b^2 = a_1$ and $a_n^b = a_n^{-1}$, $n \geqslant 2$;
- (xii) $G = K \setminus \langle b \rangle$, where K is a quasicyclic p-subgroup, p is an odd prime, $K = C_G(K)$, |b| = q is a prime such that $p \neq q$;