the element $b_{i}(x) \neq 0$ does not contain $n_{i}$-monomial,

$$
n_{i}=\left\{\begin{array}{l}
2 \operatorname{codeg} a_{i}, i=1,3 \\
2 \operatorname{codeg} a_{2}^{\prime}+k_{1}, i=2
\end{array}\right.
$$

$b_{j}(x) \equiv 0$. The matrix $B(x)$ is uniquely defined.

## References

1. B.Z. Shavarovskii. Reduced Triangular Form of Polynomial 3-by-3 Matrices with One Characteristic Root and Its Invariants, Journal of Mathematics, vol. 2018, Article ID 3127984, 6 pages, 2018.

## Contact information

## Bohdan Shavarovskii

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, L'viv, Ukraine
Email address: bshavarovskii@gmail.com
Key words and phrases. Semiscalar equivalence of matrices, reduced matrix, canonical form

# On greatest common divisors and least common multiple of linear matrix equation solutions 

Volodymyr Shchedryk

Investigation of linear equation solutions has a profound history. Due to applied and theoretical problems we need to find roots with certain predefined properties. Matrix equations were studied with a symmetry condition, with Hermitian positively defined condition, with minimal rank condition on the solutions.

Let $R$ be an associative ring with $1 \neq 0$. A set of all solutions of the equation $a=b x$ in $R$ is $c+A n n_{r}(b)$, where $c$ is some root one,

$$
A n n_{r}(b)=\{f \in R \mid b f=0\}
$$

Such a description of the roots is not always convenient. We would like to have their image in the form of a product. In this connection, the question arises search for the generating element of this set.

Let $A, B$ be a matrices over ring $R$. If $A=B C$, then $A$ is a right multiple of $B$ and $B$ is a left divisor of $A$. If $A=D A_{1}$ and $B=D B_{1}$, then $D$ is a common left divisor of $A, B$; if, furthermore, $D$ is a right multiple of every common right divisor of $A$ and $B$, then $D$ is a left greatest common divisor of $A, B$.

If $M=N A=K B$, then $M$ is a common left multiple of $A$ and $B$, and; if, furthermore, $M$ is right divisor of every common left multiple of $A$ and $B$, then $M$ is a left least common multiple of $A$ and $B$. Greatest common left divisor and the least common right multiple of two given matrices over commutative elementary divisor domain are uniquely determined up to invertible right factors.

Theorem 1. Let $R$ be a commutative elementary divisor domain [1]. Let an equation $A=B X$, where $A, B \in M_{n}(R)$ is solvable. Then the left greatest common divisor and the left least common multiple of its solutions are again its solution.

Problem. Describe a rings in which the sets of the roots of the linear equations contain a generating elements.

## References

1. I. Kaplansky Elementary divisor and modules, Trans. Amer. Math. Soc. - 1949. - 66. - P. 464-491.

## Contact information

## Volodymyr Shchedryk

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, L'viv, Ukraine
Email address: shchedrykv@ukr.net
Key words and phrases. Commutative elementary divisor domain, matrix linear equation, greatest common left divisor, least common left multiple

## Partition of Gaussian integers into a product of power-free numbers

Valeriia Shramko

We solve the problem of distribution of values of the function of the number of representations of Gaussian integers from a narrow sector in a product of power-free numbers.

Let $G$ be a set of Gaussian integers. Let $x$ be a growing to $\infty$ parameter. Let $S_{\varphi}(x)$ denote a sector of complex $S$-plane

$$
\begin{equation*}
S_{\varphi}(x):=\left\{\alpha \in G \mid \varphi_{1} \leq \arg \alpha \leq \varphi_{2}, N(\alpha) \leq x\right\}, \tag{1}
\end{equation*}
$$

where $N(\alpha)=|\alpha|^{2}$.
Let $S_{\varphi}(x)$ be a narrow sector, if $\varphi_{2}-\varphi_{1}=o\left(x^{-\varepsilon}\right)$ for $x \rightarrow \infty, \varepsilon>0$ is a small positive integer.

A Gaussian integer $\alpha$ is power-free, if there is no Gaussian integer $\beta$ such that $\alpha=\beta^{k}$, $k \in\{2,3, \ldots\}$. Let us notice that all square-free numbers are power-free.

We have proved the following statements:

Theorem 1. Let $g_{2}(\alpha)$ be the number of representations of a Gaussian integer $\alpha$ in the product of power-free numbers, where the positions of the factors are not count. For $x \rightarrow \infty$ the following asymptotic formula is true

$$
\begin{equation*}
\sum_{N(\alpha) \leq x} g_{2}(\alpha)=x \sum_{n=0}^{\infty} d_{n} \frac{I_{n+1}(2 \sqrt{\log x)}}{(\log x)^{\frac{n+1}{2}}}+O(x), \tag{2}
\end{equation*}
$$

where $I_{n}(x)$ is the modified Bessel's function of the first kind, coefficients $d_{n}, n \geq 1$, can be defined through coefficients from the decomposition of function $F(s)$ in a Taylor's series. The function $F(s)$ can be defined through an expression for the generating function of $g_{2}(\alpha)$

$$
\begin{equation*}
F_{2}(s)=\sum_{0 \neq \alpha^{\prime} \in G} \frac{g_{2}(\alpha)}{N^{s}(\alpha)}=\exp \left(\frac{\pi}{s-1}+F(s)\right) . \tag{3}
\end{equation*}
$$

Theorem 2. Let $g_{2}^{*}(\alpha)$ be the number of representations of a Gaussian integer $\alpha$ in the product $\alpha=\delta_{1} \delta_{2} \ldots \delta_{k}$, where $\delta_{i}, i=\overline{1 ; k}$, are power-free numbers, $N\left(\beta_{1}\right) \leq N\left(\beta_{2}\right) \leq \ldots \leq$

