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Partition of Gaussian integers into a product of power-free

numbers

Valeriia Shramko

We solve the problem of distribution of values of the function of the number of representations
of Gaussian integers from a narrow sector in a product of power-free numbers.

Let 𝐺 be a set of Gaussian integers. Let 𝑥 be a growing to ∞ parameter. Let 𝑆𝜙(𝑥) denote
a sector of complex 𝑆-plane

𝑆𝜙(𝑥) : = {𝛼 ∈ 𝐺 | 𝜙1 ≤ 𝑎𝑟𝑔𝛼 ≤ 𝜙2, 𝑁(𝛼) ≤ 𝑥}, (1)

where 𝑁(𝛼) =| 𝛼 |2.
Let 𝑆𝜙(𝑥) be a narrow sector, if 𝜙2 − 𝜙1 = 𝑜(𝑥−𝜀) for 𝑥 → ∞, 𝜀 > 0 is a small positive

integer.
A Gaussian integer 𝛼 is power-free, if there is no Gaussian integer 𝛽 such that 𝛼 = 𝛽𝑘,

𝑘 ∈ {2, 3, . . .}. Let us notice that all square-free numbers are power-free.

We have proved the following statements:

Theorem 1. Let 𝑔2(𝛼) be the number of representations of a Gaussian integer 𝛼 in the
product of power-free numbers, where the positions of the factors are not count. For 𝑥→∞ the
following asymptotic formula is true∑︁
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where 𝐼𝑛(𝑥) is the modified Bessel’s function of the first kind, coefficients 𝑑𝑛, 𝑛 ≥ 1, can be
defined through coefficients from the decomposition of function 𝐹 (𝑠) in a Taylor’s series. The
function 𝐹 (𝑠) can be defined through an expression for the generating function of 𝑔2(𝛼)
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Theorem 2. Let 𝑔*2(𝛼) be the number of representations of a Gaussian integer 𝛼 in the
product 𝛼 = 𝛿1𝛿2 . . . 𝛿𝑘, where 𝛿𝑖, 𝑖 = 1; 𝑘, are power-free numbers, 𝑁(𝛽1) ≤ 𝑁(𝛽2) ≤ . . . ≤
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𝑁(𝛽𝑘). Then∑︁
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where 𝑐0, 𝑎0 are positive countable constants, the sum
∑︁
(ℎ,𝜐)

means that we summarize by all the

pairs (ℎ, 𝜐) such that 1 ≤ ℎ ≤ 𝑁 , 𝜐 = 1, 2, . . . and ℎ+
1

2
𝜐 ≤ 𝑁 +

5

2
.

These results are a generalization of the results of K. Broughan [1] and I. Katai – M. V. Sub-
barao [2].
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The commutators of Sylow 2-subgroups of alternating

group and wreath product. Their minimal generating sets

Ruslan Skuratovskii

We consider the commutator of Sylow 2-subgroups of an alternating group and research its
minimal generating sets. The commutator width of a group 𝐺, denoted by 𝑐𝑤(𝐺) [1], is the
maximum of commutator lengths of elements of its derived subgroup [𝐺,𝐺]. The commutator
width of Sylow 2-subgroups of the alternating group 𝐴2𝑘 , symmetric group 𝑆2𝑘 and 𝐶𝑝 ≀𝐵 are
equal to 1. The paper presents a structure of a commutator subgroup of Sylow 2-subgroups
of alternating groups. We prove that the commutator width [1] of an arbitrary element of a
permutational wreath product of cyclic groups 𝐶𝑝𝑖 , 𝑝𝑖 ∈ N, is 1. As it has been proven in [2]
there are subgroups 𝐺𝑘 and 𝐵𝑘 in the automorphisms group 𝐴𝑢𝑡𝑋 [𝑘] of the restricted binary
rooted tree such that 𝐺𝑘 ≃ 𝑆𝑦𝑙2𝐴2𝑘 and 𝐵𝑘 ≃ 𝑆𝑦𝑙2𝑆2𝑘 , respectively.

Theorem 1. An element (𝑔1, 𝑔2)𝜎 ∈ 𝐺′
𝑘, where 𝜎 ∈ 𝑆2 iff 𝑔1, 𝑔2 ∈ 𝐺𝑘−1 and 𝑔1𝑔2 ∈ 𝐵′

𝑘−1.

Lemma 1. For any group 𝐵 and integer 𝑝 ≥ 2 the following inequality is true:
𝑐𝑤(𝐵 ≀ 𝐶𝑝) ≤ max(1, 𝑐𝑤(𝐵)).

Corollary 1. For prime 𝑝 > 2 and 𝑘 > 1 the commutator widths of 𝑆𝑦𝑙𝑝(𝐴𝑝𝑘) and of
𝑆𝑦𝑙𝑝(𝑆𝑝𝑘) are equal to 1.

Further, we analyze the structure of the elements of 𝑆𝑦𝑙2𝑆 ′
2𝑘

and obtain the following result.

Theorem 2. Elements of 𝑆𝑦𝑙2𝑆 ′
2𝑘

have the following form
{[𝑓, 𝑙] | 𝑓 ∈ 𝐵𝑘, 𝑙 ∈ 𝐺𝑘} = {[𝑙, 𝑓 ] | 𝑓 ∈ 𝐵𝑘, 𝑙 ∈ 𝐺𝑘}.
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