$N(\beta_k)$. Then

$$\sum_{N(\alpha) \le x} g_2^*(\alpha) \sim e^{c_0 \sqrt{\log x}} \sum_{(h,v)} H(h,v) (\log x)^{-\frac{2h+v}{4}} \left(1 + a_0 (\log x)^{-\frac{1}{2}} - \frac{2h+v}{4} (\log x)^{-1} \right), \quad (4)$$

where c_0 , a_0 are positive countable constants, the sum $\sum_{(h,v)}$ means that we summarize by all the

pairs
$$(h, v)$$
 such that $1 \le h \le N$, $v = 1, 2, ...$ and $h + \frac{1}{2}v \le N + \frac{5}{2}$.

These results are a generalization of the results of K. Broughan [1] and I. Katai – M. V. Subbarao [2].

References

- 1. K. Broughan, Quadrafree factorization numerorum, Rocky Mountain J. Math. (2014), no. 40(3), 791–807.
- 2. I. Katai and M. V. Subbarao *On product partitions and asymptotic formulas*, Proc. Of the Intern. Conference on analytic number theory, Bangalore, India. December 13-15, 2003. Mysore: Ramanujan Math. Soc., Ramanujan Math. Soc. Lecture Notice. (2006), no. 2, 99–114.

CONTACT INFORMATION

Valeriia Shramko

Chair of Computational Algebra and Discrete Mathematics, Odessa I. I. Mechnikov National University, Odessa, Ukraine

Email address: maths_onu@ukr.net

Key words and phrases. Gaussian integer, power-free number, square-free number

The commutators of Sylow 2-subgroups of alternating group and wreath product. Their minimal generating sets

Ruslan Skuratovskii

We consider the commutator of Sylow 2-subgroups of an alternating group and research its minimal generating sets. The commutator width of a group G, denoted by cw(G) [1], is the maximum of commutator lengths of elements of its derived subgroup [G,G]. The commutator width of Sylow 2-subgroups of the alternating group A_{2^k} , symmetric group S_{2^k} and $C_p \wr B$ are equal to 1. The paper presents a structure of a commutator subgroup of Sylow 2-subgroups of alternating groups. We prove that the commutator width [1] of an arbitrary element of a permutational wreath product of cyclic groups C_{p_i} , $p_i \in \mathbb{N}$, is 1. As it has been proven in [2] there are subgroups G_k and B_k in the automorphisms group $AutX^{[k]}$ of the restricted binary rooted tree such that $G_k \simeq Syl_2A_{2^k}$ and $B_k \simeq Syl_2S_{2^k}$, respectively.

Theorem 1. An element $(g_1, g_2)\sigma \in G'_k$, where $\sigma \in S_2$ iff $g_1, g_2 \in G_{k-1}$ and $g_1g_2 \in B'_{k-1}$.

Lemma 1. For any group B and integer $p \geq 2$ the following inequality is true:

$$cw(B \wr C_p) \le \max(1, cw(B)).$$

COROLLARY 1. For prime p > 2 and k > 1 the commutator widths of $Syl_p(A_{p^k})$ and of $Syl_p(S_{p^k})$ are equal to 1.

Further, we analyze the structure of the elements of $Syl_2S'_{2^k}$ and obtain the following result.

THEOREM 2. Elements of $Syl_2S'_{2^k}$ have the following form $\{[f,l] \mid f \in B_k, l \in G_k\} = \{[l,f] \mid f \in B_k, l \in G_k\}.$

Moreover, we get a more general result about the commutator width for a finite wreath product of finite cyclic groups.

COROLLARY 2. If $W = C_{p_k} \wr \ldots \wr C_{p_1}$ then for $k \geq 2$ we have cw(W) = 1.

THEOREM 3. The commutator width of the group $Syl_2A_{2^k}$ is equal to 1 for $k \geq 2$.

THEOREM 4. A commutator of G_k has the form $G'_k \simeq G_{k-1} \star G_{k-1}$, where \star is the subdirect product. The order of G'_k is equal to 2^{2^k-k-2} . The order of G''_k is equal to 2^{2^k-3k+1} .

PROPOSITION 1. The subgroup $(Syl_2A_{2k})'$ has a minimal generating set of 2k-3 generators.

For instance, a minimal generating set of $Syl'_2(A_8)$ consists of 3 generators: (1,3)(2,4)(5,7)(6,8), (1,2)(3,4), (1,3)(2,4)(5,8)(6,7). In addition, $Syl'_2(A_8) \simeq C_2^3$.

References

- A. Muranov. Finitely generated infinite simple groups of infinite commutator width, arXiv:math/0608688v4 [math.GR] 12 Sep 2009.
- 2. R. V. Skuratovskii. Involutive irreducible generating sets and structure of sylow 2-subgroups of alternating groups, ROMAI J., 13, Issue 1, (2017), 117-139.
- 3. R. V. Skuratovskii. Твірні та співвідношення силовських p-підгруп групи S_n [Generators and relations for Sylows p-subgroup of group S_n], Naukovi Visti KPI., no. 4, (2013), 94-105 (in Ukranian).

CONTACT INFORMATION

Ruslan Skuratovskii

Department of Computer and Informational Technology, IAMP of Kiev, Ukraine *Email address*: ruslcomp@mail.ru, ruslan@unicyb.kiev.ua

Key words and phrases. Commutator width, minimal generating set, commutator of Sylow 2-subgroups of alternating group, commutator width of wreath product

On general solutions of generalized ternary quadratic invertible functional equations of length three

FEDIR SOKHATSKY

A binary quasigroup is a pair $(Q; \circ)$, where Q is a set called a *carrier* and \circ is an invertible binary operation defined on Q, i.e., there exist operations $\stackrel{\ell}{\circ}$ and $\stackrel{r}{\circ}$ such that for any $x, y \in Q$

$$(x \stackrel{\ell}{\circ} y) \circ y = x, \qquad (x \circ y) \stackrel{\ell}{\circ} y = x, \qquad x \circ (x \stackrel{r}{\circ} y) = y, \qquad x \stackrel{r}{\circ} (x \circ y) = y$$

are true. Similarly, a mapping $f: Q^3 \to Q$ is a ternary invertible operation if there exist operations $^{(14)}f, ^{(24)}f, ^{(34)}f$ such that for all x, y, z in Q

$$f(^{(14)}f(x,y,z),y,z) = x,$$

$$f(x,^{(24)}f(x,y,z),z) = y,$$

$$f(x,y,^{(34)}f(x,y,z)) = z,$$

$$(^{(14)}f(x,y,z),y,z) = x,$$

$$^{(24)}f(x,f(x,y,z),z) = y,$$

$$^{(34)}f(x,y,f(x,y,z)) = z$$

hold. If an operation f is invertible, then the algebra $(Q; f, {}^{(14)}f, {}^{(24)}f, {}^{(34)}f)$ is called a ternary quasigroup.

Here, a ternary functional equation [1, 2] is a universally quantified equality $T_1 = T_2$, where T_1 and T_2 are terms consisting of individual and ternary functional variables, in addition all functional variables are free. The number of the functional variables including their repetitions is called a *length* of the equation. An equation is called generalized if all functional variables are pairwise different.