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For example, each quasigroup satisfying the identity(︁
(𝑢𝑛1((𝑥 · (𝑥𝑢)𝑛2𝑦) · 𝑥𝑛3⏟  ⏞  

𝑡1(𝑥,𝑦)

) · 𝑢𝑛4) · (𝑣 · (𝑧𝑛5𝑥 · 𝑧𝑢⏟  ⏞  
𝑡3(𝑥,𝑧)

)𝑣)𝑢)
)︁
· (𝑦 · (𝑧𝑛𝑛6)𝑦𝑛)⏟  ⏞  

𝑡2(𝑦,𝑧)

) = 𝑣

is isotopic to a group. A bracketing in 𝑢𝑛1 , (𝑥𝑢)𝑛2 ,. . . does not matter.

References
1. F. Sokhatsky, Parastrophic symmetry in quasigroup theory, Bulletin of Donetsk National University. Series A:

Natural Sciences. (2016), no. 1/2, 70–83.

Contact information

Fedir Sokhatsky
Department of Mathematical Analysis and Differential Equations, Vasyl’ Stus Donetsk National
University, Vinnytsia, Ukraine
Email address : fmsokha@ukr.net

Key words and phrases. Functional equation, group isotope, quasigroup identity

Canonical decompositions of solutions of functional

equation of generalized mediality

Fedir Sokhatsky, Diana Kirka

Let 𝑄 be a set, a mapping 𝑓 : 𝑄2 → 𝑄 is called an invertible binary operation (=function),
if it is invertible element in both semigroups (𝒪2;⊕

0
) and (𝒪2;⊕

1
), where 𝒪2 is the set of all

binary operations defined on 𝑄 and
(𝑓 ⊕

0
𝑔)(𝑥, 𝑦) := 𝑓(𝑔(𝑥, 𝑦), 𝑦), (𝑓 ⊕

1
𝑔)(𝑥, 𝑦) := 𝑓(𝑥, 𝑔(𝑥, 𝑦)).

The set of all binary invertible functions is denoted by ∆2. A functional equation
𝐹1(𝐹2(𝑥, 𝑦), 𝐹3(𝑢, 𝑣)) = 𝐹4(𝐹5(𝑥, 𝑢), 𝐹6(𝑦, 𝑣)), (1)

where 𝐹1, . . . , 𝐹6 are functional variables and 𝑥, 𝑦, 𝑢, 𝑣 are individual variables, is called
a functional equation of generalized mediality. The equation was solved in [1]. Namely, the
following theorem was proved

Theorem 1. A sequence (𝑓1, . . . , 𝑓6) of invertible functions defined on a set 𝑄 is a solution
of (1) if and only if there exists a comutative group (𝑄; +, 0) and bijections 𝛼1, . . . , 𝛼6 of 𝑄
such that

𝑓1(𝑥, 𝑧) = 𝛼5𝑥+ 𝛼6𝑧, 𝑓2(𝑥, 𝑦) = 𝛼5
−1(𝛼1𝑥+ 𝛼2𝑦), 𝑓3(𝑢, 𝑣) = 𝛼6

−1(𝛼3𝑢+ 𝛼4𝑣),

𝑓4(𝑧, 𝑦) = 𝛼7𝑧 + 𝛼8𝑦, 𝑓5(𝑥, 𝑢) = 𝛼7
−1(𝛼1𝑥+ 𝛼3𝑢), 𝑓6(𝑦, 𝑣) = 𝛼8

−1(𝛼2𝑦 + 𝛼4𝑣).

The sequence (+, 𝛼1, . . . , 𝛼8) will be called a decomposition of the solution (𝑓1, . . . , 𝑓6).
Theorem 1 proves that every solution has a decomposition and moreover every sequence uniquely
defines a solution of (1). But the same solution may have different decomposition. For example,
let 𝜃 be an arbitrary automorphism of the group (𝑄; +), it is easy to see that the sequence
(+, 𝜃𝛼1, . . . , 𝜃𝛼8) defines the same solution of (1).

A decomposition (+, 𝛼1, . . . , 𝛼8) of a solution of (1) will be called 0-canonical if 0 is a neutral
element of the group (𝑄; +) and 𝛼10 = 𝛼50 = 𝛼70 = 0.

Theorem 2. Every element 0 ∈ 𝑄 uniquely defines a canonical decomposition of an arbitrary
solution of the functional equation of generalized mediality.
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Canonical decompositions of solutions of the functional equations of generalized associativity
are found in [2].
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About group isotopes with inverse property

Fedir Sokhatsky, Alla Lutsenko

A quasigroup is an algebra (𝑄; ·; ℓ·; 𝑟·) with identities

(𝑥 · 𝑦)
ℓ· 𝑦 = 𝑥, (𝑥

ℓ· 𝑦) · 𝑦 = 𝑥, 𝑥
𝑟· (𝑥 · 𝑦) = 𝑦, 𝑥 · (𝑥 𝑟· 𝑦) = 𝑦.

They say that the operation (·) have: left (right, middle) inverse property [1, 4], if
𝜆𝑥 · 𝑥𝑦 = 𝑦 (respectively, 𝑦𝑥 · 𝜌𝑥 = 𝑦, 𝑥 · 𝑦 = 𝜇(𝑦 · 𝑥))

for some transformation 𝜆, (resp. 𝜌, 𝜇) of the set 𝑄.
If the operation (·) in a quasigroup (𝑄; ·; ℓ·; 𝑟·) has a middle inverse property, then the

operations (
ℓ·) and (

𝑟·) have left and right inverse property respectively.
Let (𝑄; ∘) be a group isotope (i.e. it is isotopic to a group) and let 0 ∈ 𝑄, then

𝑥 ∘ 𝑦 = 𝛼𝑥+ 𝑎+ 𝛽𝑦 (1)

is called a 0-canonical decomposition, if (𝑄; +; 0) is a group and 𝛼0 = 𝛽0 = 0. An arbitrary
element of a group isotope uniquely defines its canonical decomposition [2].

Theorem 1. Let (𝑄; ∘) be a group isotope and (1) be its canonical decomposition, then:
1) (∘) has a right inverse property if and only if 𝛼 an involutive automorphism of (𝑄; +)

and
𝛼𝑎 = −𝑎, 𝜌 = 𝛽−1𝐽𝐼𝑎𝛼𝛽.

2) (∘) has a left inverse property with if and only if 𝛽 an involutive anti-automorphism of
(𝑄; +) and

𝛽𝑎 = −𝑎, 𝜆 = 𝛼−1𝐽𝐼𝑎𝛽𝛼,

3) (∘) is middle inverse property if and only if exist anti-automorphism 𝜃 such that
𝜇𝑥 = 𝜃𝑥+ 𝑐, 𝜃2 = 𝐼−1

𝑐 , 𝛼 = 𝜃𝛽,

where 𝑐 := −𝜃𝑎+ 𝑎.
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