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Canonical decompositions of solutions of the functional equations of generalized associativity
are found in [2].
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About group isotopes with inverse property

Fedir Sokhatsky, Alla Lutsenko

A quasigroup is an algebra (𝑄; ·; ℓ·; 𝑟·) with identities

(𝑥 · 𝑦)
ℓ· 𝑦 = 𝑥, (𝑥

ℓ· 𝑦) · 𝑦 = 𝑥, 𝑥
𝑟· (𝑥 · 𝑦) = 𝑦, 𝑥 · (𝑥 𝑟· 𝑦) = 𝑦.

They say that the operation (·) have: left (right, middle) inverse property [1, 4], if
𝜆𝑥 · 𝑥𝑦 = 𝑦 (respectively, 𝑦𝑥 · 𝜌𝑥 = 𝑦, 𝑥 · 𝑦 = 𝜇(𝑦 · 𝑥))

for some transformation 𝜆, (resp. 𝜌, 𝜇) of the set 𝑄.
If the operation (·) in a quasigroup (𝑄; ·; ℓ·; 𝑟·) has a middle inverse property, then the

operations (
ℓ·) and (

𝑟·) have left and right inverse property respectively.
Let (𝑄; ∘) be a group isotope (i.e. it is isotopic to a group) and let 0 ∈ 𝑄, then

𝑥 ∘ 𝑦 = 𝛼𝑥+ 𝑎+ 𝛽𝑦 (1)

is called a 0-canonical decomposition, if (𝑄; +; 0) is a group and 𝛼0 = 𝛽0 = 0. An arbitrary
element of a group isotope uniquely defines its canonical decomposition [2].

Theorem 1. Let (𝑄; ∘) be a group isotope and (1) be its canonical decomposition, then:
1) (∘) has a right inverse property if and only if 𝛼 an involutive automorphism of (𝑄; +)

and
𝛼𝑎 = −𝑎, 𝜌 = 𝛽−1𝐽𝐼𝑎𝛼𝛽.

2) (∘) has a left inverse property with if and only if 𝛽 an involutive anti-automorphism of
(𝑄; +) and

𝛽𝑎 = −𝑎, 𝜆 = 𝛼−1𝐽𝐼𝑎𝛽𝛼,

3) (∘) is middle inverse property if and only if exist anti-automorphism 𝜃 such that
𝜇𝑥 = 𝜃𝑥+ 𝑐, 𝜃2 = 𝐼−1

𝑐 , 𝛼 = 𝜃𝛽,

where 𝑐 := −𝜃𝑎+ 𝑎.
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Let Z15 be a ring modulo 15, operations (*), (∘), (∙) defined on Z15 by the equalities
𝑥 * 𝑦 := 2𝑥+ 3 + 4𝑦, 𝑥 ∘ 𝑦 := 4𝑥+ 3 + 2𝑦, 𝑥 ∙ 𝑦 := 8𝑥+ 6− 2𝑦

have left, right and middle inverse properties respectively and 𝜆(𝑥) = 11𝑥, 𝜌(𝑥) = 11𝑥,
𝜇(𝑥) = 11𝑥.
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An invertibility criterion of composition of two multiary

central quasigroups

Fedir Sokhatsky, Viktor Savchuk

An 𝑛-ary operation 𝑓 defined on a set 𝑄 is said to be invertible if it is invertible in each of
the monoids (𝒪𝑛,⊕

𝑖
) of all 𝑛-ary operations defined on 𝑄, where

(𝑓 ⊕
𝑖
𝑔)(𝑥0, . . . , 𝑥𝑛−1) := 𝑓(𝑥0, . . . , 𝑥𝑖−1, 𝑔(𝑥0, . . . , 𝑥𝑛−1), 𝑥𝑖+1, . . . , 𝑥𝑛−1), 𝑖 = 0, . . . , 𝑛− 1.

An 𝑛-ary groupoid (𝑄; 𝑓) is called: a quasigroup, if the operation is invertible and a group
isotope, if there exists a group (𝐺; +) and bijections 𝛾0, . . . , 𝛾𝑛 from 𝑄 to 𝐺 such that

𝑓(𝑥0, . . . , 𝑥𝑛−1) = 𝛾−1
𝑛 (𝛾0𝑥0 + . . .+ 𝛾𝑛−1𝑥𝑛−1)

for all 𝑥0, . . . 𝑥𝑛−1 in 𝑄. It is easy to verify that a group isotope is a quasigroup. Let 0 be an
arbitrary element from 𝑄, a sequence (+, 𝛼0, . . . , 𝛼𝑛−1, 𝑎) is said to be a canonical decomposition
(see [1]) of a group isotope (𝑄; 𝑓) if (𝑄; +, 0) is a group, 𝛼00 = . . . = 𝛼𝑛−10 = 0, 𝑎 ∈ 𝑄 and

𝑓(𝑥0, . . . , 𝑥𝑛−1) = 𝛼0𝑥0 + . . .+ 𝛼𝑛−1𝑥𝑛−1 + 𝑎.

(𝑄; +, 0) is called a canonical decomposition group and 𝛼0, . . . , 𝛼𝑛−1 are coefficients.

A group isotope is called central, if in a canonical decomposition the group is commutative
and all coefficients are automorphisms of the group. A map 𝛼 : 𝐴→ 𝐵 is called ortho-complete,
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