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Theorem 1. A triplet (𝑓1, 𝑓2, 𝑓3) of ternary invertible operations is a solution of the equation
𝐹1(𝑧, 𝑥, 𝐹2(𝑥, 𝑦, 𝑦)) = 𝐹3(𝑧, 𝑢, 𝑢) if and only if there exist left-universally neutral invertible
operations ℎ1, ℎ2, ℎ3 and bijections 𝛼, 𝛽 such that

𝑓1(𝑥, 𝑦, 𝑧) = ℎ1(𝛼𝑥, 𝑦, 𝛽
−1𝑧), 𝑓2(𝑥, 𝑦, 𝑧) = ℎ2(𝛽𝑥, 𝑦, 𝑧), 𝑓3(𝑥, 𝑦, 𝑧) = ℎ3(𝛼𝑥, 𝑦, 𝑧).

Theorem 2. A triplet (𝑓1, 𝑓2, 𝑓3) of ternary invertible operations is a solution of the equation
𝐹1(𝐹2(𝑥, 𝑦, 𝑦), 𝑧, 𝑧) = 𝐹3(𝑥, 𝑢, 𝑢) if and only if there exist left-universally neutral invertible
operations 𝑔1, 𝑔2, 𝑔3 and bijections 𝛾, 𝛿 such that

𝑓1(𝑥, 𝑦, 𝑧) = 𝑔1(𝛾𝑥, 𝑦, 𝑧), 𝑓2(𝑥, 𝑦, 𝑧) = 𝑔2(𝛿𝑥, 𝑦, 𝑧), 𝑓3(𝑥, 𝑦, 𝑧) = 𝑔3(𝛾𝛿𝑥, 𝑦, 𝑧).

Theorem 3. A triplet (𝑓1, 𝑓2, 𝑓3) of ternary operations defined on a set 𝑄 is a quasigroup
solution of the functional equation 𝐹1(𝐹2(𝑥, 𝑦, 𝑧), 𝑢, 𝑢) = 𝐹3(𝑥, 𝑦, 𝑧) if and only if the operation
𝑓2 is invertible, there exist a bijection 𝜇 and a left-universally neutral operation 𝑔 such that

𝑓3(𝑥, 𝑦, 𝑧) = 𝜇𝑓2(𝑥, 𝑦, 𝑧), 𝑓1(𝑥, 𝑦, 𝑧) = 𝑔(𝜇𝑥, 𝑦, 𝑧).
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Let 𝑄 be an arbitrary fixed set called a carrier. A mapping 𝑓 : 𝑄3 → 𝑄 is called a ternary
invertible function, if there exist functions (14)𝑓, (24)𝑓, (34)𝑓 such that for any 𝑥, 𝑦, 𝑧 ∈ 𝑄 the
following identities:

𝑓((14)𝑓(𝑥, 𝑦, 𝑧), 𝑦, 𝑧) = 𝑥, (14)𝑓(𝑓(𝑥, 𝑦, 𝑧), 𝑦, 𝑧) = 𝑥,

𝑓(𝑥, (24)𝑓(𝑥, 𝑦, 𝑧), 𝑧) = 𝑦, (24)𝑓(𝑥, 𝑓(𝑥, 𝑦, 𝑧), 𝑧) = 𝑦,

𝑓(𝑥, 𝑦, (34)𝑓(𝑥, 𝑦, 𝑧)) = 𝑧, (34)𝑓(𝑥, 𝑦, 𝑓(𝑥, 𝑦, 𝑧)) = 𝑧

(1)

hold. If an operation 𝑓 is invertible, then the algebra (𝑄; 𝑓, (14)𝑓, (24)𝑓, (34)𝑓) is called a ternary
quasigroup [3].
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Let ∆3 be the set of all invertible ternary functions defined on a carrier 𝑄. The formulas (1)
are true for all invertible ternary functions that is to say, the above hyperidentities are true over
the set ∆3.

A universally quantified equality 𝑇1 = 𝑇2 is a ternary functional equation where 𝑇1 and 𝑇2 are
terms consisting of individual and ternary functional variables, in addition all functional variables
are free [1, 3]. We consider only generalized ternary quadratic quasigroup functional equations of
length three, where the notion ‘ternary quasigroup equation’ means that all functional variables
take their values only in the set of ternary invertible functions; the word ‘generalized’ means that
the variables are pairwise different; the word ‘quadratic’ means that every individual variable
has exactly two appearances or none; the notion ‘length of a functional equation’ is the number
of functional variables including their repetitions.

Definition. ([2]) Two functional equations are called parastrophically primarily equivalent
if one can be obtained from the other in a finite number of the following steps: 1) replacing the
equation sides; 2) renaming the functional variables; 3) renaming the individual variables; 4)
applying the hyperidentities (1).

Theorem. Every generalized quadratic ternary quasigroup functional equation of length
three is parastrophically primarily equivalent to exactly one of the following equations:

𝐹1(𝑧, 𝑥, 𝐹2(𝑥, 𝑦, 𝑦)) = 𝐹3(𝑧, 𝑢, 𝑢), 𝐹1(𝐹2(𝑥, 𝑦, 𝑧), 𝑢, 𝑢) = 𝐹3(𝑥, 𝑦, 𝑧),

𝐹1(𝐹2(𝑥, 𝑦, 𝑦), 𝑧, 𝑧) = 𝐹3(𝑥, 𝑢, 𝑢), 𝐹1(𝐹2(𝑥, 𝑦, 𝑧), 𝑥, 𝑢) = 𝐹3(𝑦, 𝑧, 𝑢).

The general solutions of each of these functional equations have been found in [4, 5].
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