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On induced modules over group rings of groups of finite

rank

Anatolii V. Tushev

Let 𝐺 be a group and 𝑘 be a field. A 𝑘𝐺-module 𝑀 is said to be imprimitive if there are a
subgroup 𝐻 < 𝐺 and a 𝑘𝐻-submodule 𝑁 ≤𝑀 such that 𝑀 = 𝑁 ⊗𝑘𝐻 𝐾𝐺. If the module M is
not imprimitive then it is said to be primitive. A representation of the group 𝐺 is said to be
primitive if the module of the representation is primitive.

Let 𝐺 be a group of finite rank 𝑟(𝐺) and 𝑘 be a field. A 𝑘𝐺-module 𝑀 is said to be semi-
imprimitive if there are subgroup 𝐻 < 𝐺 and a 𝑘𝐻-submodule 𝑁 ≤𝑀 such that 𝑟(𝐻) < 𝑟(𝐺)
and𝑀 = 𝑁⊗𝑘𝐻𝐾𝐺. If the module M is not semi-imprimitive then it is said to be semi-primitive.
A representation of the group 𝐺 is said to be semi-primitive if the module of the representation is
semi-primitive. An element 𝑔 ∈ 𝐺 ( a subgroup 𝐻 ≤ 𝐺) is said to be orbital if |𝐺 : 𝐶𝐺(𝑔)| <∞
(|𝐺 : 𝑁𝐺(𝐻)| <∞). The set ∆ (G) of all orbital elements of 𝐺 is a characteristic subgroup of
𝐺 which is said to be the 𝐹𝐶-center of 𝐺.

In [1] Harper shoved that any finitely generated not abelian-by-finite nilpotent group has
an irreducible primitive representation over any not locally finite field. In [3] we proved that
in the class of soluble groups of finite rank with the maximal condition for normal subgroups
only polycyclic groups may have irreducible primitive faithful representations over a field of
characteristic zero. In [2] Harper proved that if a polycyclic group 𝐺 has a faithful irreducible
semi-primitive representation then 𝐴

⋂︀
∆ (G) ≠ 1 for any orbital subgroup 𝐴 of 𝐺. It is well

known that any polycyclic group is liner and has finite rank.

Theorem 1. Let 𝐺 be a linear group of finite rank. Suppose that 𝐺 has a normal subgroup
1 ̸= 𝐴, such that 𝐴

⋂︀
∆ (G) = 1. Let 𝑘 be a field of characteristic zero and let 𝑀 be an irreducible

𝑘𝐺-module such that 𝐶𝐺(𝑀) = 1. Then there are a subgroup 𝑆 ≤ 𝐺 and a 𝑘𝑆-submodule 𝑈 ≤𝑀
such that 𝑟(𝑆) < (𝐺) and 𝑀 = 𝑈 ⊗𝑘𝑆 𝑘𝐺.

Corollary 1. Let 𝐺 be a linear group of finite rank. If the group 𝐺 has a faithful irreducible
semi-primitive representation over a field of characteristic zero then 𝐴

⋂︀
∆ (G) ̸= 1 for any

orbital subgroup 𝐴 of 𝐺.
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On irreducibility of monomial matrices of order 7 over

local rings

Alexander Tylyshchak

The problem of classifying, up to similarity, all the matrices over a commutative ring (which
is not a field) is usually very difficult; in most cases it is “unsolvable” (wild, as in the case of the
rings of residue classes considered by Bondarenko [1]). In such situation, an important place is
occupied by irreducible and indecomposable matrices over rings.

Let 𝑅 be a commutative local ring with identity with Jacobson radical Rad𝑅 = 𝑡𝑅, 𝑡 ̸= 0,
𝑛, 𝑘 be a natural, 0 < 𝑘 < 𝑛,

𝑀(𝑡, 𝑘, 𝑛) =

⎛⎜⎜⎝
𝑘⏞  ⏟  

0 ... 0
1 ... 0... ...

...
0 ... 1
0 ... 0... ...

...
0 ... 0

0 ... 0 𝑡
0 ... 0 0... ...

...
...

0 ... 0 0
𝑡 ... 0 0... ...

...
...

0 ... 𝑡 0

⎞⎟⎟⎠
be an 𝑛× 𝑛-matrix. This matrices first arose in studying indecomposable representations of
finite 𝑝-groups over commutative local rings [2].

The question when matrix 𝑀(𝑡, 𝑘, 𝑛) is reducible had been solved, in particular, in following
cases.

𝑀(𝑡, 𝑘, 𝑛) Case Sourse
irreducible 𝑘 = 1, 𝑛− 1, 𝑡 ̸= 0 [2]
reducible (𝑘, 𝑛) > 1 [3]

irreducible 𝑛 < 7, (𝑘, 𝑛) = 1, 𝑡 ̸= 0 [4]
reducible 𝑛 = 7, 𝑘 = 3, 4, 𝑡2 = 0 [4, 5]

Theorem 1. Let 𝑛 = 7, 0 < 𝑘 < 𝑛, 𝑡2 ̸= 0. The matrix 𝑀(𝑡, 𝑘, 𝑛) is irreducible over 𝑅.

These studies were carried out together with V. M. Bondarenko.
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