CONTACT INFORMATION

Alexander N. Vasilchenko

Cheluskintsev 19, 32, Samara, Russian Federation *Email address*: vass-alexandr@yandex.ru, vassalexandr88@gmail.com, phone +79372076904

Key words and phrases. Steenrod algebra, Hopf algebra, dual algebra, Hopf comodule, annihilator

Finite groups with given properties of normalizers of Sylow subgroups

Alexander Vasilyev, Tatsiana Vasilyeva, Anastasiya Melchanka

We consider only finite groups. We use notations and definitions from [1].

Let \mathfrak{F} be a non-empty formation. A subgroup H is called \mathfrak{F} -subnormal in G, if either H = G, or there exists a maximal chain of subgroups $H = H_0 \leq H_1 \leq \cdots \leq H_{n-1} \leq H_n = G$ such that $H_i^{\mathfrak{F}} \leq H_{i-1}$ for $i = 1, \ldots, n$.

Recall that the class of groups $w^*\mathfrak{F}$ is defined as follows:

 $w^*\mathfrak{F} = (G \mid \pi(G) \subseteq \pi(\mathfrak{F}) \text{ and every normalizer of Sylow subgroup of } G \text{ is } \mathfrak{F}\text{-subnormal in } G).$

THEOREM 1. Let \mathfrak{F} be a non-empty hereditary formation. Then the following statements are true.

- (1) $\mathfrak{F} \subseteq \mathrm{w}^* \mathfrak{F}$.
- (2) $\mathbf{w}^* \mathfrak{F} = \mathbf{w}^* (\mathbf{w}^* \mathfrak{F}).$

(3) If a formation $\mathfrak{F}_1 \subseteq \mathfrak{F}$ then $w^*\mathfrak{F}_1 \subseteq w^*\mathfrak{F}$.

(4) w* \mathfrak{F} is a formation and from $G \in \mathfrak{F}$ it follows that every Hall subgroup of G belongs to \mathfrak{F} .

According to [2], the arithmetic length of a soluble group G is defined as max $\{l_p(G)\}\)$, where $l_p(G)$ is p-length of the group G for all $p \in \pi(G)$. Note that the class $\mathfrak{L}_a(1)$ of all soluble groups whose arithmetic length ≤ 1 is a hereditary saturated Fitting formation.

THEOREM 2. Let \mathfrak{F} be a hereditary saturated formation and $\mathfrak{F} \subseteq \mathfrak{L}_a(1)$. Then $w^*\mathfrak{F} = \mathfrak{F}$.

COROLLARY 1. (1) [3] If \mathfrak{N}^2 is the class of all metanilpotent groups, then $w^*\mathfrak{N}^2 = \mathfrak{N}^2$.

(2) [3] If \mathfrak{NA} is the class of all groups G with the nilpotent commutator subgroup G', then $w^*\mathfrak{NA} = \mathfrak{NA}$.

(3)
$$\mathbf{w}^* \mathfrak{L}_a(1) = \mathfrak{L}_a(1).$$

We note that $w^* \mathfrak{N}^3 \neq \mathfrak{N}^3$.

References

- 1. A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006.
- 2. V. N. Semenchuk, Minimal non F-subgroups Algebra and Logik, 18 (1979), no. 3, 348-382.
- A. F. Vasil'ev, Finite groups with strongly K-\$\vec{s}\$-subnormal Sylow subgroups, PFMT. 4(37) (2018), 66-71 (In Russian).

CONTACT INFORMATION

Alexander Vasilyev

Department of Algebra and Geometry, F. Scorina Gomel State University, Gomel, Belarus *Email address*: formation56@mail.ru

Tatsiana Vasilyeva

Department of Algebra and Geometry, F. Scorina Gomel State University, Department of Hight Mathematics, Belarusian State University of Transport, Gomel, Belarus *Email address*: tivasilyeva@mail.ru

Anastasiya Melchanka

Department of Algebra and Geometry, F. Scorina Gomel State University, Gomel, Belarus *Email address*: melchenkonastya@mail.ru

Key words and phrases. Finite group, normalizer of Sylow subgroup, hereditary saturated formation, \mathfrak{F} -subnormal subgroup

Cotransitive subsemigroups of the full transformation semigroup T_n

Tetiana Voloshyna

The concept of a cotransitive subsemigroup for transformations semigroups was introduced by R.P. Sullivan in the work [1]. It is used to describe the ideals. We restrict ourselves to the consideration of a full transformation semigroup T_n of finite set X. For $\alpha \in T_n$ by $\pi_\alpha = \alpha \circ \alpha^{-1}$ we denote the partition of the set X into equivalence classes. Let $ran \alpha = \{x_1, x_2, \ldots, x_k\} \subseteq$ $\subseteq X, A_i = \alpha^{-1}(x_i)$. Subsemigroup $S \subseteq T_n$ is called *cotransitive*, if for every $\alpha = \begin{pmatrix} A_i \\ x_i \end{pmatrix} \in S$ with rank k we have:

h rank k we have: (1) for every $\{b_1, b_2, \dots, b_k\} \subseteq X \quad \mu = \begin{pmatrix} A_i \\ b_i \end{pmatrix} \in S;$

(2) for every $\{y_1, y_2, \ldots, y_k\} \subseteq X$ there exists $\lambda \in S$ such that $y_i \in \lambda^{-1}(x_i), i = \overline{1, k}$.

If a cotransitive subsemigroup $S \subseteq T_n$ contains element of rank k > 1, then there exists such family of partitions $\{\pi_{\alpha} | \alpha \in S'\}, S' \subseteq S$ of a set X, that separates any its k elements. For k = 1 there is the trivial partition $\rho(1)$ with one block.

Partitions $X = \bigcup_{i=1}^{k} A_i = \bigcup_{i=1}^{k} B_i$ are of the same type if sets $(|A_1|, |A_2|, \dots, |A_k|)$ and $(|B_1|, \dots, |A_k|)$

 $|B_2|, \ldots, |B_k|$ differ only in ordering. The partition $X = \bigcup_{i=1}^k A_i$ is called *less* than $X = \bigcup_{i=1}^r B_i$ if every block B_i of the second partition is a union of several blocks of the first partition. We denote the lattice of all partitions of a set X by *Part X*.

LEMMA 1. Let $\{\rho_j(k)\}_{j\in J}$ is such family of partitions of a set X into k > 1 blocks, that separates any its k elements, $Q_k = \{\rho \in Part X \mid \rho_j(k) \leq \rho \text{ for some } j \in J\}$. Then for k < n $S = \{\alpha \in T_n \mid \pi_\alpha \in \bigcup_{i=1}^k Q_i\}$ is cotransitive subsemigroup of semigroup T_n .

LEMMA 2. Let $\mu_1, \mu_2, \ldots, \mu_m$ is a family of partitions of a set X into k blocks (1 < k < n), $\{\rho_j\}_{i \in J}$ is a family of all partitions of a set X, such that are of the same type with one of μ_i , and