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Finite groups with given properties of

normalizers of Sylow subgroups

Alexander Vasilyev, Tatsiana Vasilyeva, Anastasiya Melchanka

We consider only finite groups. We use notations and definitions from [1].
Let F be a non-empty formation. A subgroup 𝐻 is called F-subnormal in 𝐺, if either 𝐻 = 𝐺,

or there exists a maximal chain of subgroups 𝐻 = 𝐻0 ≤ 𝐻1 ≤ · · · ≤ 𝐻𝑛−1 ≤ 𝐻𝑛 = 𝐺 such that
𝐻F

𝑖 ≤ 𝐻𝑖−1 for 𝑖 = 1, . . . , 𝑛.

Recall that the class of groups w*F is defined as follows:
w*F = (𝐺 | 𝜋(𝐺) ⊆ 𝜋(F) and every normalizer of Sylow subgroup of 𝐺 is F-subnormal in

𝐺).

Theorem 1. Let F be a non-empty hereditary formation. Then the following statements are
true.

(1) F ⊆ w*F.
(2) w*F = w*(w*F).
(3) If a formation F1 ⊆ F then w*F1 ⊆ w*F.
(4) w*F is a formation and from 𝐺 ∈ F it follows that every Hall subgroup of 𝐺 belongs to F.

According to [2], the arithmetic length of a soluble group 𝐺 is defined as max {𝑙𝑝(𝐺)}, where
𝑙𝑝(𝐺) is 𝑝-length of the group 𝐺 for all 𝑝 ∈ 𝜋(𝐺). Note that the class L𝑎(1) of all soluble groups
whose arithmetic length ≤ 1 is a hereditary saturated Fitting formation.

Theorem 2. Let F be a hereditary saturated formation and F ⊆ L𝑎(1). Then w*F = F.

Corollary 1. (1) [3] If N2 is the class of all metanilpotent groups, then w*N2 = N2.
(2) [3] If NA is the class of all groups 𝐺 with the nilpotent commutator subgroup 𝐺′, then

w*NA = NA.
(3) w*L𝑎(1) = L𝑎(1).

We note that w*N3 ̸= N3.
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Cotransitive subsemigroups of the full transformation

semigroup 𝑇𝑛

Tetiana Voloshyna

The concept of a cotransitive subsemigroup for transformations semigroups was introduced
by R.P. Sullivan in the work [1]. It is used to describe the ideals. We restrict ourselves to the
consideration of a full transformation semigroup 𝑇𝑛 of finite set 𝑋. For 𝛼 ∈ 𝑇𝑛 by 𝜋𝛼 = 𝛼 ∘ 𝛼−1

we denote the partition of the set 𝑋 into equivalence classes. Let 𝑟𝑎𝑛𝛼 = {𝑥1, 𝑥2, . . . , 𝑥𝑘} ⊆

⊆ 𝑋, 𝐴𝑖 = 𝛼−1(𝑥𝑖). Subsemigroup 𝑆 ⊆ 𝑇𝑛 is called cotransitive, if for every 𝛼 =

(︂
𝐴𝑖

𝑥𝑖

)︂
∈ 𝑆

with rank 𝑘 we have:
(1) for every {𝑏1, 𝑏2, . . . , 𝑏𝑘} ⊆ 𝑋 𝜇 =

(︂
𝐴𝑖

𝑏𝑖

)︂
∈ 𝑆;

(2) for every {𝑦1, 𝑦2, . . . , 𝑦𝑘} ⊆ 𝑋 there exists 𝜆 ∈ 𝑆 such that 𝑦𝑖 ∈ 𝜆−1(𝑥𝑖), 𝑖 = 1, 𝑘.
If a cotransitive subsemigroup 𝑆 ⊆ 𝑇𝑛 contains element of rank 𝑘 > 1, then there exists

such family of partitions {𝜋𝛼|𝛼 ∈ 𝑆 ′}, 𝑆 ′ ⊆ 𝑆 of a set 𝑋, that separates any its 𝑘 elements. For
𝑘 = 1 there is the trivial partition 𝜌(1) with one block.

Partitions 𝑋 =
𝑘⋃︀

𝑖=1

𝐴𝑖 =
𝑘⋃︀

𝑖=1

𝐵𝑖 are of the same type if sets (|𝐴1|, |𝐴2|, . . . , |𝐴𝑘|) and (|𝐵1|,

|𝐵2|, . . . , |𝐵𝑘|) differ only in ordering. The partition 𝑋 =
𝑘⋃︀

𝑖=1

𝐴𝑖 is called less than 𝑋 =
𝑟⋃︀

𝑖=1

𝐵𝑖

if every block 𝐵𝑖 of the second partition is a union of several blocks of the first partition. We
denote the lattice of all partitions of a set 𝑋 by 𝑃𝑎𝑟𝑡𝑋.

Lemma 1. Let {𝜌𝑗(𝑘)}𝑗∈𝐽 is such family of partitions of a set 𝑋 into 𝑘 > 1 blocks, that
separates any its 𝑘 elements, 𝑄𝑘 =

{︀
𝜌 ∈ 𝑃𝑎𝑟𝑡𝑋

⃒⃒
𝜌𝑗(𝑘) ≤ 𝜌 for some 𝑗 ∈ 𝐽

}︀
. Then for 𝑘 < 𝑛

𝑆 =
{︀
𝛼 ∈ 𝑇𝑛

⃒⃒
𝜋𝛼 ∈

𝑘⋃︀
𝑖=1

𝑄𝑖

}︀
is cotransitive subsemigroup of semigroup 𝑇𝑛.

Lemma 2. Let 𝜇1, 𝜇2, . . . , 𝜇𝑚 is a family of partitions of a set 𝑋 into 𝑘 blocks (1 < 𝑘 < 𝑛),
{𝜌𝑗}𝑗∈𝐽 is a family of all partitions of a set 𝑋, such that are of the same type with one of 𝜇𝑖, and
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