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Cotransitive subsemigroups of the full transformation

semigroup 𝑇𝑛

Tetiana Voloshyna

The concept of a cotransitive subsemigroup for transformations semigroups was introduced
by R.P. Sullivan in the work [1]. It is used to describe the ideals. We restrict ourselves to the
consideration of a full transformation semigroup 𝑇𝑛 of finite set 𝑋. For 𝛼 ∈ 𝑇𝑛 by 𝜋𝛼 = 𝛼 ∘ 𝛼−1

we denote the partition of the set 𝑋 into equivalence classes. Let 𝑟𝑎𝑛𝛼 = {𝑥1, 𝑥2, . . . , 𝑥𝑘} ⊆

⊆ 𝑋, 𝐴𝑖 = 𝛼−1(𝑥𝑖). Subsemigroup 𝑆 ⊆ 𝑇𝑛 is called cotransitive, if for every 𝛼 =

(︂
𝐴𝑖

𝑥𝑖

)︂
∈ 𝑆

with rank 𝑘 we have:
(1) for every {𝑏1, 𝑏2, . . . , 𝑏𝑘} ⊆ 𝑋 𝜇 =

(︂
𝐴𝑖

𝑏𝑖

)︂
∈ 𝑆;

(2) for every {𝑦1, 𝑦2, . . . , 𝑦𝑘} ⊆ 𝑋 there exists 𝜆 ∈ 𝑆 such that 𝑦𝑖 ∈ 𝜆−1(𝑥𝑖), 𝑖 = 1, 𝑘.
If a cotransitive subsemigroup 𝑆 ⊆ 𝑇𝑛 contains element of rank 𝑘 > 1, then there exists

such family of partitions {𝜋𝛼|𝛼 ∈ 𝑆 ′}, 𝑆 ′ ⊆ 𝑆 of a set 𝑋, that separates any its 𝑘 elements. For
𝑘 = 1 there is the trivial partition 𝜌(1) with one block.

Partitions 𝑋 =
𝑘⋃︀

𝑖=1

𝐴𝑖 =
𝑘⋃︀

𝑖=1

𝐵𝑖 are of the same type if sets (|𝐴1|, |𝐴2|, . . . , |𝐴𝑘|) and (|𝐵1|,

|𝐵2|, . . . , |𝐵𝑘|) differ only in ordering. The partition 𝑋 =
𝑘⋃︀

𝑖=1

𝐴𝑖 is called less than 𝑋 =
𝑟⋃︀

𝑖=1

𝐵𝑖

if every block 𝐵𝑖 of the second partition is a union of several blocks of the first partition. We
denote the lattice of all partitions of a set 𝑋 by 𝑃𝑎𝑟𝑡𝑋.

Lemma 1. Let {𝜌𝑗(𝑘)}𝑗∈𝐽 is such family of partitions of a set 𝑋 into 𝑘 > 1 blocks, that
separates any its 𝑘 elements, 𝑄𝑘 =

{︀
𝜌 ∈ 𝑃𝑎𝑟𝑡𝑋

⃒⃒
𝜌𝑗(𝑘) ≤ 𝜌 for some 𝑗 ∈ 𝐽

}︀
. Then for 𝑘 < 𝑛

𝑆 =
{︀
𝛼 ∈ 𝑇𝑛

⃒⃒
𝜋𝛼 ∈

𝑘⋃︀
𝑖=1

𝑄𝑖

}︀
is cotransitive subsemigroup of semigroup 𝑇𝑛.

Lemma 2. Let 𝜇1, 𝜇2, . . . , 𝜇𝑚 is a family of partitions of a set 𝑋 into 𝑘 blocks (1 < 𝑘 < 𝑛),
{𝜌𝑗}𝑗∈𝐽 is a family of all partitions of a set 𝑋, such that are of the same type with one of 𝜇𝑖, and
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𝑄 =
{︀
𝜌 ∈ 𝑃𝑎𝑟𝑡𝑋

⃒⃒
𝜌𝑗 ≤ 𝜌 for some 𝑗 ∈ 𝐽

}︀
. Then 𝑆 = 𝑆𝑛

⋃︀{︀
𝛼 ∈ 𝑇𝑛

⃒⃒
𝜋𝛼 ∈ 𝑄

}︀
is cotransitive

subsemigroup of semigroup 𝑇𝑛.

Obviously, subgroup 𝑆𝑛 is also a cotransitive subsemigroup of semigroup 𝑇𝑛.
Listed subsemigroups exhaust all cotransitive subsemigroups of semigroup 𝑇𝑛.
The following concept was introduced by I. Levi in the paper [2]. Subsemigroup 𝑆 ⊆ 𝑇𝑛 is

called 𝑆𝑛–normal if for any 𝑔 ∈ 𝑆𝑛 𝑔
−1𝑆𝑔 = 𝑆.

Theorem 1. Cotransitive subsemigroup of semigroup 𝑇𝑛 is 𝑆𝑛-normal if and only if it is a
union of equivalence classes, corresponding to the same type of partition 𝑋.
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On 𝜎-local Fitting Classes

Nikolay T. Vorob’ev

Throughout this paper all groups are finite. The notations and terminologies are standard
as in [1].

Let 𝜎 is some partition of the set of all primes P. If 𝐺 is a finite group and F is a
Fitting class of finite groups, then the symbol 𝜎(𝐺) denotes the set {𝜎𝑖 : 𝜎𝑖 ∩ 𝜋(|𝐺|) ̸= ∅} and
𝜎(F) =

⋃︀
𝐺∈F 𝜎(𝐺). Following [3], we call any function 𝑓 of the form 𝑓 : 𝜎 → {Fitting class}

a Hartley 𝜎-function (or simply 𝐻𝜎-function), and we put 𝐿𝑅𝜎(𝑓) = (𝐺 : 𝐺 = 1 or 𝐺 ̸=
1 and 𝐺E𝜎𝑖E𝜎′

𝑖 ∈ 𝑓(𝜎𝑖) for all 𝜎𝑖 ∈ 𝜎(𝐺)). If there is a 𝐻𝜎-function 𝑓 such that F = 𝐿𝑅𝜎(𝑓),
then we say that F is 𝜎-local and 𝑓 is a 𝜎-local definition of F.

Note that in the case when 𝜎 = 𝜎1 = {{2}, {3}, . . .}, 𝜎-local Fitting class F is local [2] and
we use symbol 𝐿𝑅(𝑓) instead 𝐿𝑅𝜎(𝑓). Let F = 𝐿𝑅𝜎(𝑓) for some 𝐻𝜎-function 𝑓 . Then we say
that: (a) 𝑓 is integrated if 𝑓(𝜎𝑖) ⊆ F for all 𝑖; (b) 𝑓 is full if 𝑓(𝜎𝑖)E𝜎𝑖

= 𝑓(𝜎𝑖) for all 𝑖; (c) full
integrated if 𝑓 is full and integrated.

Recall that a Fitting class is a Lockett class, if the F-radical of the direct product of groups
𝐺 and 𝐻 is the direct product of the F-radical of 𝐺 and F-radical of 𝐻 for all groups 𝐺 and 𝐻.

Theorem 1. Every 𝜎-local Fitting class can be defined by a unique full integrated 𝐻𝜎-function
𝐹 such that 𝐹 (𝜎𝑖) = 𝐹 (𝜎𝑖)E𝜎𝑖

⊆ F for all 𝜎𝑖 ∈ 𝜎(F) and the value 𝐹 (𝜎𝑖) for every 𝜎𝑖 ∈ 𝜎(F) is
a Lockett class.

Theorem 2. Every product F ◇ H of two 𝜎-local Fitting classes F and H is a 𝜎-local Fitting
class.

In the case when 𝜎 = 𝜎1, we get from Theorem 1 and Theorem 2 the well-known results [2]
and [3] for local Fitting classes.
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