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𝑄 =
{︀
𝜌 ∈ 𝑃𝑎𝑟𝑡𝑋

⃒⃒
𝜌𝑗 ≤ 𝜌 for some 𝑗 ∈ 𝐽

}︀
. Then 𝑆 = 𝑆𝑛

⋃︀{︀
𝛼 ∈ 𝑇𝑛

⃒⃒
𝜋𝛼 ∈ 𝑄

}︀
is cotransitive

subsemigroup of semigroup 𝑇𝑛.

Obviously, subgroup 𝑆𝑛 is also a cotransitive subsemigroup of semigroup 𝑇𝑛.
Listed subsemigroups exhaust all cotransitive subsemigroups of semigroup 𝑇𝑛.
The following concept was introduced by I. Levi in the paper [2]. Subsemigroup 𝑆 ⊆ 𝑇𝑛 is

called 𝑆𝑛–normal if for any 𝑔 ∈ 𝑆𝑛 𝑔
−1𝑆𝑔 = 𝑆.

Theorem 1. Cotransitive subsemigroup of semigroup 𝑇𝑛 is 𝑆𝑛-normal if and only if it is a
union of equivalence classes, corresponding to the same type of partition 𝑋.
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On 𝜎-local Fitting Classes

Nikolay T. Vorob’ev

Throughout this paper all groups are finite. The notations and terminologies are standard
as in [1].

Let 𝜎 is some partition of the set of all primes P. If 𝐺 is a finite group and F is a
Fitting class of finite groups, then the symbol 𝜎(𝐺) denotes the set {𝜎𝑖 : 𝜎𝑖 ∩ 𝜋(|𝐺|) ̸= ∅} and
𝜎(F) =

⋃︀
𝐺∈F 𝜎(𝐺). Following [3], we call any function 𝑓 of the form 𝑓 : 𝜎 → {Fitting class}

a Hartley 𝜎-function (or simply 𝐻𝜎-function), and we put 𝐿𝑅𝜎(𝑓) = (𝐺 : 𝐺 = 1 or 𝐺 ̸=
1 and 𝐺E𝜎𝑖E𝜎′

𝑖 ∈ 𝑓(𝜎𝑖) for all 𝜎𝑖 ∈ 𝜎(𝐺)). If there is a 𝐻𝜎-function 𝑓 such that F = 𝐿𝑅𝜎(𝑓),
then we say that F is 𝜎-local and 𝑓 is a 𝜎-local definition of F.

Note that in the case when 𝜎 = 𝜎1 = {{2}, {3}, . . .}, 𝜎-local Fitting class F is local [2] and
we use symbol 𝐿𝑅(𝑓) instead 𝐿𝑅𝜎(𝑓). Let F = 𝐿𝑅𝜎(𝑓) for some 𝐻𝜎-function 𝑓 . Then we say
that: (a) 𝑓 is integrated if 𝑓(𝜎𝑖) ⊆ F for all 𝑖; (b) 𝑓 is full if 𝑓(𝜎𝑖)E𝜎𝑖

= 𝑓(𝜎𝑖) for all 𝑖; (c) full
integrated if 𝑓 is full and integrated.

Recall that a Fitting class is a Lockett class, if the F-radical of the direct product of groups
𝐺 and 𝐻 is the direct product of the F-radical of 𝐺 and F-radical of 𝐻 for all groups 𝐺 and 𝐻.

Theorem 1. Every 𝜎-local Fitting class can be defined by a unique full integrated 𝐻𝜎-function
𝐹 such that 𝐹 (𝜎𝑖) = 𝐹 (𝜎𝑖)E𝜎𝑖

⊆ F for all 𝜎𝑖 ∈ 𝜎(F) and the value 𝐹 (𝜎𝑖) for every 𝜎𝑖 ∈ 𝜎(F) is
a Lockett class.

Theorem 2. Every product F ◇ H of two 𝜎-local Fitting classes F and H is a 𝜎-local Fitting
class.

In the case when 𝜎 = 𝜎1, we get from Theorem 1 and Theorem 2 the well-known results [2]
and [3] for local Fitting classes.
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On 𝜎-local Fitting sets

Nikolay T. Vorob’ev, Katherine Lantsetova

Throughout this paper all groups are finite. The notations and terminologies are standard
as in [1], 𝐺 always denotes a group, |𝐺| is the order of 𝐺.

Let P be the set of all primes. If 𝑛 is an integer, the symbol 𝜋(𝑛) denotes the set of all primes
dividing 𝑛; as usual, 𝜋(𝐺) = 𝜋(|𝐺|), the set of all primes dividing the order of 𝐺. Following
[2], 𝜎 is a partition of P, that is, 𝜎 = {𝜎𝑖 : 𝑖 ∈ 𝐼}, where P =

⋃︀
𝑖∈𝐼 𝜎𝑖, 𝜎𝑖

⋂︀
𝜎𝑗 = ø for all 𝑖 ̸= 𝑗;

𝜎(𝑛) = {𝜎𝑖 : 𝜎𝑖
⋂︀
𝜋(𝑛) ̸= ø}; 𝜎(𝐺) = 𝜎(|𝐺|). A set ℱ of subgroups of 𝐺 [1] is called a Fitting

set of 𝐺 if the following conditions are satisfied: i) If 𝑇 E 𝑆 ∈ ℱ , then 𝑇 ∈ ℱ ; ii) If 𝑆, 𝑇 ∈ ℱ
and 𝑆, 𝑇 E 𝑆𝑇 , then 𝑆𝑇 ∈ ℱ ; iii) If 𝑆 ∈ ℱ and 𝑥 ∈ 𝐺, then 𝑆𝑥 ∈ ℱ . A class F of groups is
said a Fitting class [1] if it is closed under taking normal subgroups and products of normal
F-subgroups. Let E𝜎𝑖

be the class of all 𝜎𝑖-groups and E𝜎
′
𝑖
be the class of all 𝜎′

𝑖-groups.
For a Fitting set ℱ of 𝐺 and a Fitting class X [3], we call the set {𝐻 ≤ 𝐺 : 𝐻/𝐻ℱ ∈ X} of

subgroups of 𝐺 the product of ℱ and X and denote it by ℱ ⊙ X.
A function 𝑓 : 𝜎 → {Fitting sets of 𝐺} a Hartley 𝜎-function (or simply 𝐻𝜎-function of 𝐺

and we put
𝐿𝐹𝑆𝜎(𝑓) = {𝐻 ≤ 𝐺 : 𝐻 = 1 𝑜𝑟 𝐻 ̸= 1 𝑎𝑛𝑑 𝐻E𝜎𝑖E𝜎𝑖

′ ∈ 𝑓(𝜎𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎𝑖 ∈ 𝜎(𝐺)} (1)

Definition 1. Let ℱ be a Fitting set of 𝐺. If there is an 𝐻𝜎-function 𝑓 such that
ℱ = 𝐿𝐹𝑆𝜎(𝑓), then we say that ℱ is 𝜎-local and 𝑓 is a 𝜎-local definition of ℱ .

If 𝐻 ≤ 𝐺, then 𝐹𝑖𝑡𝑠𝑒𝑡(𝐻) will denote the intersection of all Fitting sets of 𝐺 that contain
𝐻. Clearly 𝐹𝑖𝑡𝑠𝑒𝑡(𝐻) is again a Fitting set of 𝐺, and so we call it the Fitting set generated by
𝐻. A function 𝑓 of Fitting set ℱ is called full, if 𝑓(𝜎𝑖) = 𝑓(𝜎𝑖)⊙ E𝜎i

for all 𝜎𝑖 ∈ 𝜎(ℱ), where
𝜎(ℱ) is the set of all primes dividing the order of all ℱ -subgroups of 𝐺.

Theorem 1. Let ℱ be a 𝜎-local Fitting set of 𝐺. Then
(a) ℱ can be defined by a unique minimal 𝐻𝜎-function 𝑓 such that

𝑓(𝜎𝑖) = 𝐹𝑖𝑡𝑠𝑒𝑡(𝐻 ≤ 𝐺 : 𝐻 = (𝑋E𝜎𝑖E𝜎𝑖
′ )𝑥, 𝑋 ∈ ℱ and 𝑥 ∈ 𝐺) for all 𝜎𝑖 ∈ 𝜎(ℱ).

(b) ℱ can be defined by a unique full minimal 𝐻𝜎-function 𝑓 such that
𝑓 = 𝐹𝑖𝑡𝑠𝑒𝑡(𝐻 ≤ 𝐺 : 𝐻E𝜎𝑖 = (𝑋E𝜎𝑖E𝜎𝑖

′ )𝑥, 𝑋 ∈ ℱ and 𝑥 ∈ 𝐺)⊙E𝜎𝑖
for all 𝜎𝑖 ∈ 𝜎(ℱ).
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