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3) every non-abelian subgroup of the adjoint group 𝑅∘ is a subalgebra in 𝑅.
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Commutative Bezout ring, which is a ring of neat range 1

Bohdan Zabavskyi, Olha Domsha

All rings considered will be commutative with nonzero unit.
Recall that ring is Bezout ring if it finitely generated ideals is principal. Ring 𝑅 is said to

have a stable range 2 if for every elements 𝑎, 𝑏, 𝑐 ∈ 𝑅 such that 𝑎𝑅 + 𝑏𝑅 + 𝑐𝑅 = 𝑅 we have
(𝑎+ 𝑐𝑥)𝑅 + (𝑏+ 𝑐𝑦)𝑅 = 𝑅 for some elements 𝑥, 𝑦 ∈ 𝑅. Ring 𝑅 is called an elementary divisor
ring if for any matrix 𝐴 of order 𝑛×𝑚 over 𝑅 there exist invertible matrices 𝑃 ∈ 𝐺𝐿𝑛(𝑅) and
𝑄 ∈ 𝐺𝐿𝑚(𝑅) such that 𝑃𝐴𝑄 = 𝐷 is a diagonal matrix, 𝐷 = (𝑑𝑖𝑖) and 𝑑𝑖+1,𝑖+1𝑅 ⊂ 𝑑𝑖𝑖𝑅. A ring
𝑅 is called a clean ring if for any 𝑎 ∈ 𝑅 there exist invertible element 𝑢 ∈ 𝑅 and idempotent
𝑒 ∈ 𝑅 such that 𝑎 = 𝑒+ 𝑢. Element 𝑎 ∈ 𝑅 is called a neat element if factor-ring 𝑅/𝑎𝑅 is a clean
ring. Ring 𝑅 is called a ring of neat range 1 if from condition 𝑎𝑅 + 𝑏𝑅 = 𝑅 implies that 𝑎+ 𝑏𝑡
is a neat element for some 𝑡 ∈ 𝑅.

Proposition 1. Let 𝑅 be a commutative Bezout ring of neat range 1. Then for any ideal 𝐼
of 𝑅 factor-ring 𝑅/𝐼 is a ring of neat range 1.

Proposition 2. A commutative Bezout ring is a ring of neat range 1 if and only if factor-ring
𝑅/𝐽(𝑅) is a ring of neat range 1 (where 𝐽(𝑅) – is Jacobson radical).

Theorem 1. Commutative Bezout ring in which all zero divisors are in Jacobson radical is
an elementary divisor ring if and only if it is a ring of neat range 1.
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𝐽-Noetherian Bezout domain which are not of stable

range 1

Bohdan Zabavsky, Oleh Romaniv

All rings considered will be commutative and have identity.
A ring 𝑅 is a ring of stable range 1 if for any 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑅 + 𝑏𝑅 = 𝑅 we have

(𝑎+ 𝑏𝑡)𝑅 = 𝑅 for some 𝑡 ∈ 𝑅.
An element 𝑎 is an element of stable range 1 if for any 𝑏 ∈ 𝑅 such that 𝑎𝑅 + 𝑏𝑅 = 𝑅 we

have 𝑎+ 𝑏𝑡 is an invertible element for some 𝑡 ∈ 𝑅.
An element 𝑎 ∈ 𝑅 is an element of almost stable range 1 if 𝑅/𝑎𝑅 is a ring of stable range 1.
By a Bezout ring we mean a ring in which all finitely generated ideals are principal.
By a 𝐽-ideal of 𝑅 we mean an intersection of maximal ideals of 𝑅.
A ring 𝑅 is 𝐽-Noetherian provided 𝑅 has maximum condition of 𝐽-ideals.
A commutative ring 𝑅 is called an elementary divisor ring [3] if for an arbitrary matrix 𝐴 of

order 𝑛×𝑚 over 𝑅 there exist invertible matrices 𝑃 ∈ 𝐺𝐿𝑛(𝑅) and 𝑄 ∈ 𝐺𝐿𝑚(𝑅) such that
𝑃𝐴𝑄 = 𝐷 is diagonal matrix, 𝐷 = (𝑑𝑖𝑖),
𝑑𝑖+1,𝑖+1𝑅 ⊂ 𝑑𝑖𝑖𝑅.
Let 𝑅 be a Bezout domain. An element 𝑎 ∈ 𝑅 is called a neat element if for every elements

𝑏, 𝑐 ∈ 𝑅 such that 𝑏𝑅 + 𝑐𝑅 = 𝑅 there exist 𝑟, 𝑠 ∈ 𝑅 such that 𝑎 = 𝑟𝑠 where 𝑟𝑅 + 𝑏𝑅 = 𝑅,
𝑠𝑅 + 𝑐𝑅 = 𝑅 and 𝑟𝑅 + 𝑠𝑅 = 𝑅. A Bezout domain is said to be of neat range 1 if for any
𝑐, 𝑏 ∈ 𝑅 such that 𝑐𝑅 + 𝑏𝑅 = 𝑅 there exists 𝑡 ∈ 𝑅 such that 𝑎+ 𝑏𝑡 is a neat element.

Theorem 1. A commutative Bezout domain 𝑅 is an elementary divisor domain if and only
if 𝑅 is a ring of neat range 1.

Theorem 2. A nonunit divisor of a neat element of a commutative Bezout domain is a
neat element.

Theorem 3. Let 𝑅 be a 𝐽-Noetherian Bezout domain which is not a ring of stable range 1.
Then in 𝑅 there exists an element 𝑎 ∈ 𝑅 such that 𝑅/𝑎𝑅 is a local ring.

By [8], any adequate element of a commutative Bezout ring is a neat element. An element 𝑎
of a domain 𝑅 is said to be adequate, if for every element 𝑏 ∈ 𝑅 there exist elements 𝑟, 𝑠 ∈ 𝑅
such that (1) 𝑎 = 𝑟𝑠; (2) 𝑟𝑅+ 𝑏𝑅 = 𝑅 (3) 𝑠𝑅+ 𝑏𝑅 ̸= 𝑅 for any 𝑠 ∈ 𝑅 such that 𝑠𝑅 ⊂ 𝑠𝑅 ≠ 𝑅.
A domain 𝑅 is called adequate if every nonzero element of 𝑅 is adequate [4].

Theorem 4. Let 𝑅 be a commutative Bezout element and 𝑎 is non-zero nonunit element of
𝑅. If 𝑅/𝑎𝑅 is local ring, then 𝑎 is an adequate element.

Theorem 5. Let 𝑅 be a 𝐽-Noetherian Bezout domain which is not a ring of stable range 1.
Then in 𝑅 there exists a nonunit adequate element.

Theorem 6. Let 𝑅 be a Bezout domain in which every nonzero nonunit element has only
finitely many prime ideals minimal over it. Then the factor ring 𝑅/𝑎𝑅 is the finite direct sum
of valuation rings.
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