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Let 𝐴(𝑥) ∈ 𝑀𝑚(𝐹 [𝑥]) and 𝐵(𝑥) ∈ 𝑀𝑛(𝐹 [𝑥]) be the polynomial matrices and 𝐹 be an
algebraically closed field of characteristic zero, that is

𝐴(𝑥) =

𝑠1∑︁
𝑖=0

𝐴𝑖𝑥
𝑠1−𝑖, 𝐵(𝑥) =

𝑠2∑︁
𝑖=0

𝐵𝑖𝑥
𝑠2−𝑖.

Using the books [1] and [2] we get the following results.

Theorem 2. If 𝐴(𝑥) and 𝐵(𝑥) are the regular polynomial matrices of a simple structure
and (𝑑𝑒𝑡(𝐴(𝑥), 𝑑𝑒𝑡𝐵(𝑥)) = 1, then

𝐴(𝑥)⊗𝐵(𝑥) = (𝐴0 ⊗𝐵0)(𝐸𝑚𝑛𝑥− 𝐶1)(𝐸𝑚𝑛𝑥− 𝐶2) . . . (𝐸𝑚𝑛𝑥− 𝐶𝑠1+𝑠2),

where (𝐸𝑚𝑛𝑥− 𝐶𝑖) are the matrices of a simple structure.

Theorem 3. Let 𝐴(𝑥) and 𝐵(𝑥) are the regular polynomial matrices and not more than one
of elementary divisor of one of them is of degree two and the rest are degrees of not more than
one. Then the regular polynomial matrix 𝐴(𝑥)⊗ 𝐵(𝑥) is decomposed into a product of linear
regular factors.

To obtain such factorizations, matrices 𝑀𝐺(𝑥)(𝜙𝑘) are used, 𝐺(𝑥) are based on matrix
𝐴(𝑥)⊗𝐵(𝑥), 𝜙𝑘(𝑥) is divisor of degree 𝑚𝑛 of polynomial (𝑑𝑒𝑡𝐴)𝑛(𝑑𝑒𝑡𝐵)𝑚.
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The least dimonoid congruences on the free 𝑛-nilpotent

trioid

Anatolii V. Zhuchok

Motivated by problems of algebraic topology, J.-L. Loday and M.O. Ronco introduced the
notion of a trioid [1]. The notion of a dimonoid was introduced in [2].

If 𝜌 is a congruence on a trioid (𝑇,⊣,⊢,⊥) such that two operations of (𝑇,⊣,⊢,⊥)/𝜌 coincide
and it is a dimonoid, we say that 𝜌 is a dimonoid congruence [3]. A dimonoid congruence 𝜌 on a
trioid (𝑇,⊣,⊢,⊥) is called a 𝑑⊥⊣ -congruence (respectively, 𝑑⊥⊢ -congruence) [3] if operations ⊣ and
⊥ (respectively, ⊢ and ⊥) of (𝑇,⊣,⊢,⊥)/𝜌 coincide. If 𝜌 is a congruence on a trioid (𝑇,⊣,⊢,⊥)
such that all operations of (𝑇,⊣,⊢,⊥)/𝜌 coincide, we say that 𝜌 is a semigroup congruence.
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As usual, N denotes the set of all positive integers. For any 𝑛, 𝑘 ∈ N and 𝐿 ⊆ {1, 2, . . . , 𝑛},
𝐿 ̸= ∅, we let 𝐿+ 𝑘 = {𝑚+ 𝑘 | 𝑚 ∈ 𝐿}.

Let 𝑋 be an arbitrary nonempty set, and let 𝑤 be an arbitrary word over the alphabet 𝑋.
The length of 𝑤 is denoted by ℓ𝑤. Let 𝐹 [𝑋] be the free semigroup on 𝑋. Fix 𝑛 ∈ N. Define
operations ⊣, ⊢, and ⊥ on

𝐹𝑁𝑇𝑛 = {(𝑤,𝐿) | 𝑤 ∈ 𝐹 [𝑋], ℓ𝑤 ≤ 𝑛, 𝐿 ⊆ {1, 2, ..., ℓ𝑤}, 𝐿 ̸= ∅} ∪ {0}
by

(𝑤,𝐿) ⊣ (𝑢,𝑅) =

{︂
(𝑤𝑢,𝐿) , ℓ𝑤𝑢≤𝑛,

0, ℓ𝑤𝑢 > 𝑛,

(𝑤,𝐿) ⊢ (𝑢,𝑅) =

{︂
(𝑤𝑢,𝑅 + ℓ𝑤) , ℓ𝑤𝑢≤𝑛,

0, ℓ𝑤𝑢 > 𝑛,

(𝑤,𝐿) ⊥ (𝑢,𝑅) =

{︂
(𝑤𝑢,𝐿 ∪ (𝑅 + ℓ𝑤)), ℓ𝑤𝑢≤𝑛,

0, ℓ𝑤𝑢 > 𝑛,

(𝑤,𝐿) * 0 = 0 * (𝑤,𝐿) = 0 * 0 = 0

for all (𝑤,𝐿), (𝑢,𝑅) ∈ 𝐹𝑁𝑇𝑛∖{0} and * ∈ {⊣,⊢,⊥}. The algebra (𝐹𝑁𝑇𝑛,⊣,⊢,⊥) will be
denoted by 𝐹𝑁𝑇𝑛(𝑋).

Lemma 1. 𝐹𝑁𝑇𝑛(𝑋) is a trioid.

The free 𝑛-nilpotent trioid 𝑃 0
𝑛(𝑋) was first constructed in [4].

Theorem 1. The free 𝑛-nilpotent trioid 𝑃 0
𝑛(𝑋) is isomorphic to the trioid 𝐹𝑁𝑇𝑛(𝑋).

We characterize the least dimonoid congruences and the least semigroup congruence on
𝐹𝑁𝑇𝑛(𝑋) and consider separately free 𝑛-nilpotent trioids of rank 1.
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On the structure of free trioids

Yuliia V. Zhuchok

Trioids were introduced by J.-L. Loday and M.O. Ronco in the context of algebraic topol-
ogy [1]. A trialgebra [1] is just a linear analog of a trioid. For extensive information on trioids
see [2]. The construction of the free monogenic trioid was presented in [1]. In [3] decompositions
of free trioids into tribands and bands of subtrioids were characterized and the least rectangular
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