Metric dimension of metric transform and wreath product.


  • B. Ponomarchuk Faculty of Informatics, National University of "Kyiv-Mohyla Academy", Kyiv, Ukraine

Ключові слова:

Metric space, metric dimension, metric transforms, wreath product


Metric dimension of metric transform and wreath product.


L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford, 1953.

F. Harary, R. A. Melter On the metric dimension of a graph Ars Comb. 2 (1976), 191—195.

P. J. Slater Leaves of trees Congr. Numer. 14 (1975), 549-–559.

A. Rosenfeld, B. Raghavachari, S. Khuller, Landmarks in graphs, Discr. Appl. Math. 70 (1996), 217-–229

A. Sebo, E. Tannier, On Metric Generators of Graphs, Math. Oper. Res. 29 (2004), 383–393.

A. Beardon, S. Bau, The Metric Dimension of Metric Spaces, Comput. Meth. Funct. Theory 13 (2013), 295–305.

M. Heydarpour, S. Maghsoudi, The metric dimension of geometric spaces, Top. Appl. 178 (2014), 230–235.

L. M. Blumenthal, Remarks concerning the euclidean four-point property, Erg. Math. Kolloqu 7 (1936), 8—10.

I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. Math. 39 (1938), no. 2, 811–841.

I. J. Schoenberg, J. von Neumann, Fourier integrals and metric geometry, Trans. Amer. Math. Soc. 50 (1941),


D. Johnson, M. Garey, Computers and intractability. A guide to the theory of NP-completeness, W. H. Freeman and Company, 1979.

F. Harary, On the group of the composition of two graphs, Duke Math. J. 26 (1959), 29—36.

B. Oliynyk, Wreath product of metric spaces, Alg. Discr. math. 4 (2007), 123—130.

B. Oliynyk, Infinitely iterated wreath products of metric spaces, Alg. Discr. math. 15 (2013), no. 1, 48–62.




Тези доповідей