On irreducibility of monomial matrices of order 7 over local rings.

Автор(и)

  • A. Tylyshchak Department of Algebra, Uzhhorod National University, Uzhhorod, Ukraine

Ключові слова:

Local ring, Jacobson radical, irreducible matrix, monomial matrix

Анотація

The problem of classifying, up to similarity, all the matrices over a commutative ring (which is not a field) is usually very difficult; in most cases it is “unsolvable” (wild, as in the case of the rings of residue classes considered by Bondarenko [1]). In such situation, an important place is occupied by irreducible and indecomposable matrices over rings.

Посилання

V. M. Bondarenko, O podobii matrits nad kol’tsom klassov vychetov [On the similarity of matrices over rings of residue classes], Mathematics collection, Izdat. "Naukova Dumka”, Kiev, (1976), 275–277 (in Russian).

P. M. Gudivok and O. A. Tylyshchak, Pro nezvidni modulyarni zobrazhennya skinchennykh p-hrup nad komutatyvnymy lokal’nymy kil’tsyamy [On the irreducible modular representations of finite ..-groups over commutative local rings], Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 3 (1998), 78–83 (in Ukrainian).

V. M. Bondarenko, J. Gildea, A. A. Tylyshchak and N. V. Yurchenko, On hereditary reducibility of 2-monomial matrices over commutative rings, Algebra Discrete Math. 27 (2019), no. 1, 1–11.

V. M. Bondarenko, M. Yu. Bortos, R. F. Dinis and A. A. Tylyshchak, Reducibility and irreducibility of monomial matrices over commutative rings, Algebra Discrete Math. 16 (2013), no. 2, 171–187.

R. F. Dinis, Zvidnist’ matryts’ ..(.., .. . 4, ..) nad lokal’nymy kil’tsyamy holovnykh idealiv dovzhyny 2 [Reducibility of monomial matrices ..(.., .. . 4, ..) over local principle ideal rings of length 2 ], Nauk. Visn. Uzhgorod. Univ., Ser. Mat. and Inform. 24 (2013), no. 1, 29–33 (in Ukrainian).

##submission.downloads##

Номер

Розділ

Тези доповідей