Diagonal reduction of matrices over commutative semihereditary Bezout rings.

Authors

  • A. Gatalevych Ivan Franko National University of Lviv, Lviv, Ukraine

Keywords:

Bezout ring, elementary divisor ring, semihereditary ring, stable range, Gelfand range 1, adequate element, Gelfand element

Abstract

All rings considered will be commutative and have identity. Recently there has been some
interest in the polynomial ring R [x], where R is a von Neumann regular ring.

References

I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464–491.

McAdam, S., Swan, R. G., Unique comaximal factorization, J. Algebra. 276 (2004), 180–192.

Shores T., Modules over semihereditary Bezout rings, Proc. Amer. Math. Soc. 46 (1974), 211–213.

B.V. Zabavsky, Conditions for stable range of an elementary divisor rings, Comm. Algebra 45 (2017), no. 9, 4062–4066.

Downloads

Issue

Section

Тези доповідей