Cramer’s rules for Sylvester-type quaternion matrix equations.
Ключові слова:
Matrix equation, quaternion determinant, Moore-Penrose inverse, Cramer’s RuleАнотація
Cramer’s rules for Sylvester-type quaternion matrix equations.Посилання
C.C. Took, D.P. Mandic, Augmented second-order statistics of quaternion random signals, Sign. Process. 91 (2011), 214–224.
Q.W. Wang, J.W. van der Woude, H.X. Chang, A system of real quaternion matrix equations with applications, Linear Algebra Appl. 431 (2009), 2291–2303.
I. Kyrchei, Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer’s rules, Linear Multilinear Algebra 59 (2011), no. 4, 413–431.
I. Kyrchei, Cramer’s rule for quaternion systems of linear equations, Fundam. Prikl. Mat. 13 (2007), no. 4, 67–94.
I. Kyrchei, The theory of the column and row determinants in a quaternion linear algebra, In: A.R. Baswell (Ed.), Advances in Mathematics Research no. 15, 301–359, Nova Science Publ., New York, 2012.
I. Kyrchei, Cramer’s Rules for Sylvester quaternion matrix equation and its special cases, Adv. Appl. Clifford Algebras 28:90 (2018).
I. Kyrchei, Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrix equation, Abstr. Appl. Anal. ID5926832 (2019), 14 p.